Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
World J Stem Cells ; 16(5): 486-498, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38817333

RESUMEN

BACKGROUND: A decreased autophagic capacity of bone marrow mesenchymal stromal cells (BMSCs) has been suggested to be an important cause of decreased osteogenic differentiation. A pharmacological increase in autophagy of BMSCs is a potential therapeutic option to increase osteoblast viability and ameliorate osteoporosis. AIM: To explore the effects of sinomenine (SIN) on the osteogenic differentiation of BMSCs and the underlying mechanisms. METHODS: For in vitro experiments, BMSCs were extracted from sham-treated mice and ovariectomized mice, and the levels of autophagy markers and osteogenic differentiation were examined after treatment with the appropriate concentrations of SIN and the autophagy inhibitor 3-methyladenine. In vivo, the therapeutic effect of SIN was verified by establishing an ovariectomy-induced mouse model and by morphological and histological assays of the mouse femur. RESULTS: SIN reduced the levels of AKT and mammalian target of the rapamycin (mTOR) phosphorylation in the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway, inhibited mTOR activity, and increased autophagy ability of BMSCs, thereby promoting the osteogenic differentiation of BMSCs and effectively alleviating bone loss in ovariectomized mice in vivo. CONCLUSION: The Chinese medicine SIN has potential for the treatment of various types of osteoporosis, bone homeostasis disorders, and autophagy-related diseases.

3.
Elife ; 122023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37929702

RESUMEN

Rheumatoid arthritis (RA) is characterized by joint synovitis and bone destruction, the etiology of which remains to be explored. Many types of cells are involved in the progression of RA joint inflammation, among which the overactivation of M1 macrophages and osteoclasts has been thought to be an essential cause of joint inflammation and bone destruction. Glioma-associated oncogene homolog 1 (GLI1) has been revealed to be closely linked to bone metabolism. In this study, GLI1 expression in the synovial tissue of RA patients was positively correlated with RA-related scores and was highly expressed in collagen-induced arthritis (CIA) mouse articular macrophage-like cells. The decreased expression and inhibition of nuclear transfer of GLI1 downregulated macrophage M1 polarization and osteoclast activation, the effect of which was achieved by modulation of DNA methyltransferases (DNMTs) via transcriptional regulation and protein interactions. By pharmacological inhibition of GLI1, the proportion of proinflammatory macrophages and the number of osteoclasts were significantly reduced, and the joint inflammatory response and bone destruction in CIA mice were alleviated. This study clarified the mechanism of GLI1 in macrophage phenotypic changes and activation of osteoclasts, suggesting potential applications of GLI1 inhibitors in the clinical treatment of RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Osteólisis , Proteína con Dedos de Zinc GLI1 , Animales , Humanos , Ratones , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , ADN/metabolismo , Inflamación/metabolismo , Metiltransferasas/metabolismo , Osteoclastos/metabolismo , Osteólisis/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
4.
Biomaterials ; 302: 122352, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37866014

RESUMEN

Osteoporosis is a degenerative disease affecting millions of elderly people globally and increases the risk of bone fractures due to the reduced bone density. Drugs are normally prescribed to treat osteoporosis, especially after surgical treatment of osteoporotic fractures. However, many anti-osteoporotic drugs produce deleterious side effects. The recent development of gene therapy utilizing oligonucleotides (ONs) has spurred the development of new therapies for osteoporosis. Nevertheless, most ONs lack the capability of cell penetration and lysosome escape and hence, intracellular delivery of ON remains a challenge. Herein, a novel strategy is demonstrated to efficiently deliver ON to cells by combining ON with the cell-penetrating peptide (CPP) via the bio-orthogonal click reaction. Several dopamine (DOPA) groups are also introduced into the fabricated peptide to scavenge intracellular reactive oxygen species (ROS). Owing to favorable properties such as good cytocompatibility, cell penetration, lysosome escape, ROS scavenging, and osteoclastogenesis suppression, the hybrid CPP-DOPA-ON peptide improves the osteoporotic conditions significantly in vivo even when bone implants are involved. This strategy has great potential in the treatment of osteoporosis and potentially broadens the scope of gene therapy.


Asunto(s)
Osteoporosis , Fracturas Osteoporóticas , Humanos , Anciano , Especies Reactivas de Oxígeno , Osteoporosis/terapia , Péptidos/uso terapéutico , Dihidroxifenilalanina
5.
Cell Death Dis ; 14(9): 631, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749079

RESUMEN

Osteoporosis is not well treated due to the difficulty of finding commonalities between the various types of it. Iron homeostasis is a vital component in supporting biochemical functions, and iron overload is recognized as a common risk factor for osteoporosis. In this research, we found that there is indeed evidence of iron accumulation in the bone tissue of patients with osteoporosis and REPIN1, as an origin specific DNA binding protein, may play a key role in this process. We revealed that sh-Repin1 therapy can rescue bone loss in an iron-overload-induced osteoporosis mouse model. Knockdown of Repin1 can inhibit apoptosis and enhance the resistance of osteoblasts to iron overload toxicity. REPIN1 promoted apoptosis by regulating iron metabolism in osteoblasts. Mechanistically, knockdown of Repin1 decreased the expression of Lcn2, which ameliorated the toxic effects of intracellular iron overload. The anti-iron effect of lentivirus sh-Repin1 was partially reversed or replicated by changing LCN2 expression level via si-RNA or plasmid, which indirectly verified the key regulatory role of LCN2 as a downstream target. Furthermore, the levels of BCL2 and BAX, which play a key role in the mitochondrial apoptosis pathway, were affected. In summary, based on the results of clinical specimens, animal models and in vitro experiments, for the first time, we proved the key role of REPIN1 in iron metabolism-related osteoporosis.


Asunto(s)
Proteínas de Unión al ADN , Sobrecarga de Hierro , Osteoporosis , Animales , Humanos , Ratones , Apoptosis , Modelos Animales de Enfermedad , Proteínas de Unión al ADN/genética , Hierro , Sobrecarga de Hierro/genética , Osteoblastos , Osteoporosis/genética , Proteínas de Unión al ARN
6.
Ageing Res Rev ; 89: 101981, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37302756

RESUMEN

Inflammatory arthritis, primarily including rheumatoid arthritis, osteoarthritis and ankylosing spondylitis, is a group of chronic inflammatory diseases, whose general feature is joint dysfunction with chronic pain and eventually causes disability in older people. To date, both Western medicine and traditional Chinese medicine (TCM) have developed a variety of therapeutic methods for inflammatory arthritis and achieved excellent results. But there is still a long way to totally cure these diseases. TCM has been used to treat various joint diseases for thousands of years in Asia. In this review, we summarize clinical efficacies of TCM in inflammatory arthritis treatment after reviewing the results demonstrated in meta-analyses, systematic reviews, and clinical trials. We pioneered taking inflammatory arthritis-related cell targets of TCM as the entry point and further elaborated the molecular targets inside the cells of TCM, especially the signaling pathways. In addition, we also briefly discussed the relationship between gut microbiota and TCM and described the role of drug delivery systems for using TCM more accurately and safely. We provide updated and comprehensive insights into the clinical application of TCM for inflammatory arthritis treatment. We hope this review can guide and inspire researchers to further explore mechanisms of the anti-arthritis activity of TCM and make a great leap forward in comprehending the science of TCM.


Asunto(s)
Artritis Reumatoide , Medicamentos Herbarios Chinos , Osteoartritis , Humanos , Anciano , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Resultado del Tratamiento , Osteoartritis/tratamiento farmacológico
7.
Adv Sci (Weinh) ; 10(20): e2207334, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37162248

RESUMEN

Over the last decade, adipose-derived stem cells (ADSCs) have attracted increasing attention in the field of regenerative medicine. ADSCs appear to be the most advantageous cell type for regenerative therapies owing to their easy accessibility, multipotency, and active paracrine activity. This review highlights current challenges in translating ADSC-based therapies into clinical settings and discusses novel strategies to overcome the limitations of ADSCs. To further establish ADSC-based therapies as an emerging platform for regenerative medicine, this review also provides an update on the advancements in this field, including fat grafting, wound healing, bone regeneration, skeletal muscle repair, tendon reconstruction, cartilage regeneration, cardiac repair, and nerve regeneration. ADSC-based therapies are expected to be more tissue-specific and increasingly important in regenerative medicine.


Asunto(s)
Procedimientos de Cirugía Plástica , Medicina Regenerativa , Tejido Adiposo/metabolismo , Adipocitos , Células Madre/metabolismo
8.
Bone Res ; 11(1): 8, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36690624

RESUMEN

MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.

9.
Mater Today Bio ; 18: 100508, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36504542

RESUMEN

Poor wound healing after diabetes mellitus remains a challenging problem, and its pathophysiological mechanisms have not yet been fully elucidated. Persistent bleeding, disturbed regulation of inflammation, blocked cell proliferation, susceptible infection and impaired tissue remodeling are the main features of diabetic wound healing. Conventional wound dressings, including gauze, films and bandages, have a limited function. They generally act as physical barriers and absorbers of exudates, which fail to meet the requirements of the whol diabetic wound healing process. Wounds in diabetic patients typically heal slowly and are susceptible to infection due to hyperglycemia within the wound bed. Once bacterial cells develop into biofilms, diabetic wounds will exhibit robust drug resistance. Recently, the application of stimuli-responsive hydrogels, also known as "smart hydrogels", for diabetic wound healing has attracted particular attention. The basic feature of this system is its capacities to change mechanical properties, swelling ability, hydrophilicity, permeability of biologically active molecules, etc., in response to various stimuli, including temperature, potential of hydrogen (pH), protease and other biological factors. Smart hydrogels can improve therapeutic efficacy and limit total toxicity according to the characteristics of diabetic wounds. In this review, we summarized the mechanism and application of stimuli-responsive hydrogels for diabetic wound healing. It is hoped that this work will provide some inspiration and suggestions for research in this field.

10.
Research (Wash D C) ; 2022: 9823784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157511

RESUMEN

For patients with osteoporosis, the therapeutic outcomes of osteoimplants are substantially affected by the impaired proliferation, migration, and osteogenic differentiation abilities of bone marrow mesenchymal stem cells (BMSCs). To improve bone-implant integration in osteoporotic condition, here we reported a one-step biomimetic surface strategy to introduce BMSC recruiting and osteoinductive abilities onto metallic osteoimplants. In our design, the bioadhesive molecular peptide mimic inspired by mussel foot proteins (Mfps) was used as molecular bridging for surface functionalization. Specifically, a BMSC-targeting peptide sequence (E7) and an osteogenic growth peptide (Y5) were grafted onto the titanium implant surfaces through a mussel adhesion mechanism. We found that a rational E7/Y5 feeding ratio could lead to an optimal dual functionalization capable of not only significantly improving the biocompatibility of the implant but also enabling it to recruit endogenous BMSCs for colonization, proliferation, and osteogenic differentiation. Mechanistically, the E7-assisted in situ recruitment of endogenous BMSCs as well as the enhanced interfacial osteogenesis and osteointegration was associated with activation of the C-X-C chemokine receptor type 4 (CXCR4) receptor on the cell surface and promotion of stromal cell-derived factor (SDF-1α) autocrine secretion. We anticipated that rational dual-functional surfaces through bioadhesive molecular mimics will provide a simple, effective, nonimmunogenic, and safe means to improve the clinical outcomes of intraosseous implants, especially under osteoporotic conditions.

11.
Mater Today Bio ; 16: 100355, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35875196

RESUMEN

Bone injury repair has always been a tricky problem in clinic, the recent emergence of bone tissue engineering provides a new direction for the repair of bone injury. However, some bone tissue processes fail to achieve satisfactory results mainly due to insufficient vascularization or cellular immune rejection. Exosomes with the ability of vesicle-mediated intercellular signal transmission have gained worldwide attention and can achieve cell-free therapy. Exosomes are small vesicles that are secreted by cells, which contain genetic material, lipids, proteins and other substances. It has been found to play the function of material exchange between cells. It is widely used in bone tissue engineering to achieve cell-free therapy because it not only does not produce some immune rejection like cells, but also can play a cell-like function. Exosomes from different sources can bind to scaffolds in various ways and affect osteoblast, angioblast, and macrophage polarization in vivo to promote bone regeneration. This article reviews the recent research progress of exosome-loaded tissue engineering, focusing on the mechanism of exosomes from different sources and the application of exosome-loaded scaffolds in promoting bone regeneration. Finally, the existing deficiencies and challenges, future development directions and prospects are summarized.

12.
Adv Healthc Mater ; 11(13): e2200298, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388979

RESUMEN

Diabetes mellitus is a chronic metabolic disease with a proinflammatory microenvironment, causing poor vascularization and bone regeneration. Due to the lack of effective therapy and one-sided focus on the direct angiogenic properties of biomaterials and osteogenesis stimulation, the treatment of diabetic bone defect remains challenging and complex. In this study, using gelatin methacryloyl (GelMA) as a template, a lithium (Li) -modified bioglass-hydrogel for diabetic bone regeneration is developed. It exhibits a sustained ion release for better bone regeneration under diabetic microenvironment. The hydrogel is shown to be mechanically adaptable to the complex shape of the defect. In vitro, Li-modified bioglass-hydrogel promoted cell proliferation, direct osteogenesis, and regulated macrophages in high glucose (HG) microenvironment, with the secretion of bone morphogenetic protein-2 and vascular endothelial growth factor to stimulate osteogenesis and neovascularization indirectly. In vivo, composite hydrogels containing GelMA and Li-MBG (GM/M-Li) release Li ions to relieve inflammation, providing an anti-inflammatory microenvironment for osteogenesis and angiogenesis. Applying Li-modified bioglass-hydrogel, significantly enhances bone regeneration in a diabetic rat bone defect. Together, both remarkable in vitro and in vivo outcomes in this study present an opportunity for diabetic bone regeneration on the basis of HG microenvironment.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Animales , Regeneración Ósea , Cerámica , Gelatina , Glucosa/farmacología , Hidrogeles/farmacología , Litio/farmacología , Macrófagos , Metacrilatos , Osteogénesis , Ratas , Factor A de Crecimiento Endotelial Vascular/farmacología
13.
Autophagy ; 18(12): 2817-2829, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35255774

RESUMEN

Increased bone resorption by osteoclasts after estrogen deficiency is the main cause of postmenopausal osteoporosis. TET2 (tet methylcytosine dioxygenase 2) is a DNA demethylase that regulates cellular function and differentiation potential. Macroautophagy/autophagy maintains cellular homeostasis by recycling unnecessary and damaged organelles. This study revealed that TET2 promoted bone loss in oophorectomized (OVX) mice and that TET2 promoted osteoclast differentiation by regulating autophagy. Tet2 knockdown inhibited autophagy and osteoclast differentiation in vitro. Mechanistically, Tet2 knockdown increased BCL2 (B cell leukemia/lymphoma 2) expression and BCL2 exhibited increased binding to BECN1 and negatively regulated autophagy. Small interfering RNA specific to Bcl2 interfered with BCL2 expression in Tet2-knockdown bone marrow cells/precursors, partially reversing autophagy dysregulation and promoting osteoclast differentiation. Moreover, the LV-shTet2 lentivirus prevented bone loss in OVX mice. In summary, our findings provide evidence that TET2 promotes osteoclast differentiation by inhibiting BCL2 expression and positively regulating BECN1-dependent autophagy.Abbreviations: ACP5/TRAP: acid phosphatase 5, tartrate resistant; ATP6V0D2: ATPase, H+ transporting, lysosomal V0 subunit D2; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; BMs: bone marrow cells; CTSK: cathepsin K; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MMP9: matrix metallopeptidase 9; OVX: oophorectomy; RUNX1: runt related transcription factor 1; SOCS3: suppressor of cytokine signaling 3; SPI1/PU.1: Spi-1 proto-oncogene; TNFSF11/RANKL: tumor necrosis factor (ligand) superfamily, member 11; TET2: tet methylcytosine dioxygenase 2.


Asunto(s)
Resorción Ósea , Proteínas de Unión al ADN , Dioxigenasas , Animales , Ratones , Autofagia/fisiología , Resorción Ósea/patología , Diferenciación Celular , Dioxigenasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
14.
J Colloid Interface Sci ; 605: 410-424, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34332414

RESUMEN

In the inflammatory peri-implant microenvironment, excessive polarization of macrophages to the proinflammatory M1 phenotype can trigger the secretion of inflammatory cytokines, which promote bone resorption and impede osteogenesis around implants. The direct consequence of this process is the failure of prosthetic implants due to aseptic loosening. To reverse the inflammatory microenvironment and prevent prosthesis loosening, a mussel adhesion-inspired surface strategy was used for bioengineering of titanium implants with integrin-binding ability. In our design, a mussel-inspired catecholic peptide with tetravalent 3,4-dihydroxy-l-phenylalanine (DOPA) and Arg-Gly-Asp (RGD) sequences was synthesized. The peptide can easily anchor to the surface of medical titanium materials through a mussel adhesive mechanism. We found that peptide-decorated titanium implants could effectively inhibit peri-implant inflammation in a wear particle model and could promote the polarization of macrophages to a pro-healing M2 phenotype by interfering with integrin-α2ß1 and integrin-αvß3. Moreover, the peptide coating increased the adherence of osteoblasts and promoted osteogenesis on titanium implants even under inflammatory conditions. This work suggested that this biomimetic catecholic integrin-binding peptide can provide facile tactics for surface bioengineering of medical prostheses with improved interfacial osteogenesis under inflammatory conditions, which might contribute greatly to the prevention of prosthesis loosening and the improvement of clinical outcomes.


Asunto(s)
Osteogénesis , Titanio , Humanos , Inflamación/etiología , Péptidos , Prótesis e Implantes
15.
Sci China Life Sci ; 65(3): 588-603, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34125371

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease that eventually leads to disability. Inflammatory cell infiltration, severe joint breaking and systemic bone loss are the main clinical symptoms. In this study, we established a collagen-induced arthritis (CIA) model and found a large number of M1 macrophages and pyroptosis, which are important sources of proinflammatory cytokines. Punicalagin (PUN) is an active substance extracted from pomegranate peel. We found that it inhibited joint inflammation, cartilage damage and systemic bone destruction in CIA mice. PUN effectively alleviated the high expression of inflammatory cytokines in synovial tissue in vivo. PUN treatment shifted macrophages from the M1 phenotype to the M2 phenotype after stimulation with lipopolysaccharide (LPS) and interferon (IFN)-γ. The expression of inducible nitric oxide synthase (iNOS) and other proinflammatory cytokines released by M1 macrophages was decreased in the PUN treatment group. However, simultaneously, the expression of markers of anti-inflammatory M2 macrophages, such as arginase (Arg)-1 and interleukin (IL)-10, was increased. In addition, PUN treatment attenuated pyroptosis by downregulating the expression of NLRP3 and caspase-1, thereby preventing inflammatory cell death resulting from the release of IL-1ß and IL-18. Mechanistically, PUN inhibited the activation of receptor activators of the nuclear factor-κB (NF-κB) signaling pathway, which contributes to M1 polarization and pyroptosis of macrophages. We concluded that PUN ameliorated pathological inflammation by inhibiting M1 phenotype polarization and pyroptosis and has great potential as a therapeutic treatment for human RA.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Taninos Hidrolizables/farmacología , Macrófagos/efectos de los fármacos , FN-kappa B/fisiología , Piroptosis/efectos de los fármacos , Animales , Artritis Experimental/inmunología , Artritis Reumatoide/tratamiento farmacológico , Caspasa 1/fisiología , Células Cultivadas , Citocinas/análisis , Regulación hacia Abajo , Taninos Hidrolizables/uso terapéutico , Masculino , Ratones , Ratones Endogámicos DBA , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
16.
Pharmacol Res ; 174: 105967, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34740817

RESUMEN

Osteoporosis (OP) is characterized by decreased trabecular bone volume and microarchitectural deterioration in the medullary cavity. Urolithin A (UA) is a biologically active metabolite generated by the gut microbiota. UA is the measurable product considered the most relevant urolithin as the final metabolic product of polyphenolic compounds. Considering that catabolic effects mediated by the intestinal microbiota are highly involved in pathological bone disorders, exploring the biological influence and molecular mechanisms by which UA alleviates OP is crucial. Our study aimed to investigate the effect of UA administration on OP progression in the context of estrogen deficiency-induced bone loss. The in vivo results indicated that UA effectively reduced ovariectomy-induced systemic bone loss. In vitro, UA suppressed Receptor Activator for Nuclear Factor-κB Ligand (RANKL)-triggered osteoclastogenesis in a concentration-dependent manner. Signal transduction studies and sequencing analysis showed that UA significantly decreased the expression of inflammatory cytokines (e.g., IL-6 and TNF-α) in osteoclasts. Additionally, attenuation of inflammatory signaling cascades inhibited the NF-κB-activated NOD-like receptor signaling pathway, which eventually led to decreased cytoplasmic secretion of IL-1ß and IL-18 and reduced expression of pyroptosis markers (NLRP3, GSDMD, and caspase-1). Consistent with this finding, an NLRP3 inflammasome inhibitor (MCC950) was employed to treat OP, and modulation of pyroptosis was found to ameliorate osteoclastogenesis and bone loss in ovariectomized (OVX) mice, suggesting that UA suppressed osteoclast formation by regulating the inflammatory signal-dependent pyroptosis pathway. Conceivably, UA administration may be a safe and promising therapeutic strategy for osteoclast-related bone diseases such as OP.


Asunto(s)
Antiinflamatorios/uso terapéutico , Cumarinas/uso terapéutico , Osteoporosis Posmenopáusica/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Catepsina K/genética , Catepsina K/metabolismo , Supervivencia Celular/efectos de los fármacos , Cumarinas/farmacología , Citocinas/genética , Citocinas/metabolismo , Femenino , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/antagonistas & inhibidores , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/metabolismo , Piroptosis/efectos de los fármacos , Ligando RANK/genética , Ligando RANK/farmacología , Células RAW 264.7 , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos
17.
Front Immunol ; 12: 657687, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079546

RESUMEN

Peri-prosthetic osteolysis (PPO) and following aseptic loosening are regarded as the prime reasons for implant failure after joint replacement. Increasing evidence indicated that wear-debris-irritated inflammatory response and macrophage polarization state play essential roles in this osteolytic process. Harmine, a ß-carboline alkaloid primitively extracted from the Peganum harmala seeds, has been reported to have various pharmacological effects on monoamine oxidase action, insulin intake, vasodilatation and central nervous systems. However, the impact of harmine on debris-induced osteolysis has not been demonstrated, and whether harmine participates in regulating macrophage polarization and subsequent osteogenic differentiation in particle-irritated osteolysis remains unknown. In the present study, we investigated the effect of harmine on titanium (Ti) particle-induced osteolysis in vivo and in vitro. The results suggested harmine notably alleviated Ti particle-induced bone resorption in a murine PPO model. Harmine was also found to suppress the particle-induced inflammatory response and shift the polarization of macrophages from M1 phenotypes to M2 phenotypes in vivo and in vitro, which improved anti-inflammatory and bone-related cytokines levels. In the conditioned medium from Ti particle-stimulated murine macrophage RAW264.7 cells treated with harmine, the osteoblast differentiation ability of mouse pre-osteoblastic MC3T3-E1 cells was greatly increased. And we also provided evidences that the immunomodulatory capacity of harmine might be attributed to the inhibition of the c-Jun N-terminal kinase (JNK) in wear particle-treated macrophages. All the results strongly show that harmine might be a promising therapeutic agent to treat PPO.


Asunto(s)
Enfermedades Óseas/etiología , Enfermedades Óseas/metabolismo , Harmina/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Osteogénesis/efectos de los fármacos , Titanio/efectos adversos , Animales , Biomarcadores , Enfermedades Óseas/diagnóstico , Enfermedades Óseas/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Inflamación/complicaciones , Inflamación/etiología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Masculino , Ratones , Óxido Nítrico/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/inmunología , Osteoclastos/metabolismo , Osteólisis/diagnóstico , Osteólisis/tratamiento farmacológico , Osteólisis/etiología , Osteólisis/metabolismo , Células RAW 264.7 , Microtomografía por Rayos X
18.
Bioorg Chem ; 113: 104978, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34052737

RESUMEN

Osteoarthritis (OA) is a chronic disease featured by joint hyperplasia, deterioration of articular cartilage, and progressive degeneration. Abnormal expression of microRNAs (miRNAs) has been found to be implicated in the pathological process of OA. In this study, the role of miR-361-5p transferred by exosomes derived from human bone mesenchymal stem cells (hBMSCs) in OA was investigated. The expression of Asp-Glu-Ala-Asp-box polypeptide 20 (DDX20) and miR-361-5p in interleukin-1ß (IL-1ß)-treated chondrocytes was determined by reverse transcription quantitative polymerase chain reaction. DDX20 was knocked down by transfection of short hairpin RNA targeting DDX20, and the effects of DDX20 downregulation on IL-1ß-induced damage of chondrocytes were detected. The interaction between DDX20 and miR-361-5p was tested by luciferase report assay. hBMSCs-derived exosomes loaded with miR-361-5p were co-incubated with chondrocytes followed by detection of cell viability, proliferation and inflammatory response. An OA rat model was established to further explore the role of miR-361-5p in vivo. Western blot, luciferase reporter and immunofluorescence staining assays were used to evaluate the activation of the nuclear factor kappa-B (NF-κB) signaling pathway. We found that DDX20 was upregulated, while miR-361-5p was underexpressed in IL-1ß-treated chondrocytes. Downregulation of DDX20 inhibits levels of matrix metalloproteinases (MMPs) and suppresses inflammation induced by IL-1ß. Mechanistically, miR-361-5p was verified to directly target DDX20. In addition, hBMSC-derived exosomes-transferred miR-361-5p alleviates chondrocyte damage and inhibits the NF-κB signaling pathway via targeting DDX20. Inhibition of NF-κB signaling reverses the effect of overexpressed DDX20 on IL-1ß-induced chondrocyte damage. Moreover, exosomal miR-361-5p alleviates OA damage in vivo. Overall, hBMSC-derived exosomal miR-361-5p alleviates OA damage by targeting DDX20 and inactivating the NF-κB signaling pathway.


Asunto(s)
Proteína 20 DEAD-Box/metabolismo , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Osteoartritis/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , MicroARNs/genética , Ratas , Ratas Wistar , Transducción de Señal
19.
Bioact Mater ; 6(10): 3343-3357, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33817415

RESUMEN

Periprosthetic osteolysis (PPO) remains the key factor in implant failure and subsequent revision surgery and is mainly triggered by wear particles. Previous studies have shown that inhibition of osteoblastic differentiation is the most widespread incident affecting the interface of trabecular and loosening prostheses. Additionally, the NLRP3 inflammasome is activated by prosthetic particles. Sirtuin3, an NAD+-dependent deacetylase of mitochondria, regulates the function of mitochondria in diverse activities. However, whether SIRT3 can mitigate wear debris-induced osteolysis by inhibiting the NLRP3 inflammasome and enhancing osteogenesis has not been previously reported. Therefore, we investigated the role of SIRT3 during the process of titanium (Ti) particle-induced osteolysis. We revealed that upregulated SIRT3 dramatically attenuated Ti particle-induced osteogenic inhibition through suppression of the NLRP3 inflammasome and improvement of osteogenesis in vivo and in vitro. Moreover, we found that SIRT3 interference in the process of Ti particle-induced osteolysis relied on the GSK-3ß/ß-catenin signalling pathway. Collectively, these findings indicated that SIRT3 may serve as a rational new treatment against debris-induced PPO by deacetylase-dependent inflammasome attenuation.

20.
Int J Biol Sci ; 17(5): 1382-1394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867853

RESUMEN

Implant-derived wear particles can be phagocytosed by local macrophages, triggering an inflammatory cascade that can drive the activation and recruitment of osteoclasts, thereby inducing peri-prosthetic osteolysis. Efforts to suppress pro-inflammatory cytokine release and osteoclastsogenesis thus represent primary approaches to treating and preventing such osteolysis. Sirtuin 3 (SIRT3) is a NAD+-dependent deacetylases that control diverse metabolic processes. However, whether SIRT3 could mitigate wear debris-induced osteolysis has not been reported. Herein we explored the impact of the SIRT3 on titanium particle-induced osteolysis. Tartrate resistant acid phosphatase (TRAP) staining revealed that the inhibition of SIRT3 suppressed nuclear factor-κB ligand (RANKL)-mediated osteoclasts activation in a dose-dependent fashion. Notably, inhibition of SIRT3 also suppressed matrix metallopeptidase 9 (MMP9) and nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) expression at the mRNA and protein levels, while also inhibiting the mRNA expression of dendritic cell-specific transmembrane protein (DC-STAMP), ATPase H+ Transporting V0 Subunit D2 (Atp6v0d2), TRAP and Cathepsin K (CTSK) . In addition, inhibition of SIRT3 suppressed titanium particle-induced tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) expression and prevented titanium particle-induced osteolysis and bone loss in vivo. This inhibition of osteoclasts differentiation was found to be linked to the downregulation and reduced phosphorylation of JNK and ERK. Taken together, inhibition of SIRT3 may be a potential target for titanium particle-induced bone loss.


Asunto(s)
Resorción Ósea , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Osteoclastos , Osteólisis , Sirtuina 3 , Titanio/efectos adversos , Animales , Resorción Ósea/inducido químicamente , Resorción Ósea/inmunología , Resorción Ósea/metabolismo , Interfase Hueso-Implante/fisiología , Diferenciación Celular , Células Cultivadas , Descubrimiento de Drogas , Interleucinas/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Factores de Transcripción NFATC/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Osteoclastos/inmunología , Osteoclastos/metabolismo , Osteólisis/inducido químicamente , Osteólisis/inmunología , Osteólisis/metabolismo , Ligando RANK/metabolismo , Sirtuina 3/antagonistas & inhibidores , Sirtuina 3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...