Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
ACS Appl Mater Interfaces ; 16(20): 25869-25878, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728411

RESUMEN

Liraglutide has been extensively applied in the treatment of type 2 diabetes mellitus (T2DM), but its 11-15 h half-life resulted in daily administration, which led to poor patient compliance. This study aimed to solve this problem by developing liraglutide-loaded microspheres with a 1 month sustained release prepared by the W1/O/W2 method combined with the premix membrane emulsification technique to improve therapeutic efficacy. Remarkably, we found that the amphiphilic properties of liraglutide successfully reduced the oil-water interfacial tension, resulting in a stable primary emulsion and decreasing the level of drug leakage into the external water phase. As a result, exceptional drug loading (>8%) and encapsulation efficiency (>85%) of microspheres were achieved. Furthermore, the uniformity in microsphere size facilitated an in-depth exploration of the structural characteristics of liraglutide-loaded microspheres. The results indicated that the dimensions of the internal cavities of the microspheres were significantly influenced by the size of the inner water droplets in the primary emulsion. A denser and more uniform cavity structure decreased the initial burst release, improving the release process of liraglutide from the microspheres. To evaluate the release behavior of liraglutide from microspheres, a set of in vitro release assays and in vivo pharmacodynamics were performed. The liraglutide-loaded microspheres effectively decreased fasting blood glucose (FBG) levels and hemoglobin A1c (HbA1c) levels while enhancing the pancreatic and hepatic functions in db/db mice. In conclusion, liraglutide sustained-release microspheres showed the potential for future clinical applications in the management of T2DM and provided an effective therapeutic approach to overcoming patient compliance issues.


Asunto(s)
Preparaciones de Acción Retardada , Diabetes Mellitus Tipo 2 , Liraglutida , Microesferas , Liraglutida/química , Liraglutida/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Animales , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Ratones , Glucemia/efectos de los fármacos , Glucemia/análisis , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Liberación de Fármacos , Emulsiones/química , Tamaño de la Partícula
2.
EClinicalMedicine ; 71: 102585, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38638401

RESUMEN

Background: Anlotinib is a new type of tyrosine kinase inhibitor that targets vascular endothelial growth factor receptors 1/2/3, platelet-derived growth factor receptors α/ß, and fibroblast growth factor receptors 1-4 and c-Kit, with a broad spectrum of inhibitory effects on tumor angiogenesis and growth. It has been proven effective in HER2-negative metastatic breast cancer, but its efficacy in early-stage triple-negative breast cancer (TNBC) is unknown. This phase 2 study aims to evaluate the efficacy and safety of adding anlotinib to neoadjuvant chemotherapy in patients with TNBC. Methods: Patients with clinical stage II/III TNBC were treated with 5 cycles of anlotinib (12 mg, d1-14, q3w) plus 6 cycles of taxanes (docetaxel 75 mg/m2 ,d1, q3w or nab-paclitaxel 125 mg/m2, d1 and d8, q3w) and lobaplatin (30 mg/m2, d1, q3w), followed by surgery. The primary endpoint was pathological complete response (pCR; ypT0/is ypN0) and the secondary endpoints include breast pCR (bpCR), axillary pCR (apCR), residual cancer burden (RCB), objective response rate (ORR), survival, and safety. Exploratory endpoints were efficacy biomarkers based on Fudan University Shanghai Cancer Center Immunohistochemical (FUSCC IHC) classification for TNBC and next-generation sequencing (NGS) of DNA from tumor tissue and blood samples of patients with 425-gene panel. This trial is registered with www.chictr.org.cn (ChiCTR2100043027). Findings: From Jan 2021 to Aug 2022, 48 patients were assessed and 45 were enrolled. All patients received at least one dose of study treatment and underwent surgery. The median age was 48.5 years (SD: 8.7), 71% were nodal involved, and 20% had stage III. In the intention-to-treat population, 26 out of 45 patients achieved pCR (57.8%; 90% CI, 44.5%-70.3%), and 39 achieved residual cancer burden class 0-I (86.7%; 95% CI, 73.2%-94.9%). The bpCR and apCR rate were 64.4% (29/45) and 71.9% (23/32), respectively. No recurrence or metastasis occurred during the short-term follow-up. Based on the FUSCC IHC-based subtypes, the pCR rates were 68.8% (11/16) for immunomodulatory subtype, 58.3% (7/12) for basal-like immune-suppressed subtype and 33.3% (4/12) for luminal androgen receptor subtype, respectively. NGS revealed that the pCR were 77% (10/13) and 50% (14/28) in MYC-amplified and wild-type patients, respectively, and 78% (7/9) and 53% (17/32) in gBRCA1/2-mutated and wild-type patients, respectively. The median follow-up time of the study was 14.9 months (95% CI: 13.5-16.3 months). There was no disease progression or death during neoadjuvant therapy. No deaths occurred during postoperative follow-up. In the safety population (N = 45), Grade 3 or 4 treatment emergent adverse events occurred in 29 patients (64%), and the most common events were neutropenia (38%), leukopenia (27%), thrombocytopenia (25%), anemia (13%), and hypertension (13%), respectively. Interpretation: The addition of anlotinib to neoadjuvant chemotherapy showed manageable toxicity and encouraging antitumor activity for patients with clinical stage II/III TNBC. Funding: Chongqing Talents Project, Chongqing Key Project of Technology Innovation and Application Development and Chongqing Outstanding Youth Natural Science Foundation.

3.
Front Immunol ; 15: 1379853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650937

RESUMEN

Introduction: Macrophages are an important component of innate immunity and involved in the immune regulation of multiple diseases. The functional diversity and plasticity make macrophages to exhibit different polarization phenotypes after different stimuli. During tumor progression, the M2-like polarized tumor-associated macrophages (TAMs) promote tumor progression by assisting immune escape, facilitating tumor cell metastasis, and switching tumor angiogenesis. Our previous studies demonstrated that functional remodeling of TAMs through engineered-modifying or gene-editing provides the potential immunotherapy for tumor. However, lack of proliferation capacity and maintained immune memory of infused macrophages restricts the application of macrophage-based therapeutic strategies in the repressive tumor immune microenvironment (TIME). Although J2 retrovirus infection enabled immortalization of bone marrow-derived macrophages (iBMDMs) and facilitated the mechanisms exploration and application, little is known about the phenotypic and functional differences among multi kinds of macrophages. Methods: HE staining was used to detect the biosafety of iBMDMs, and real-time quantitative PCR, immunofluorescence staining, and ELISA were used to detect the polarization response and expression of chemokines in iBMDMs. Flow cytometry, scratch assay, real-time quantitative PCR, and crystal violet staining were used to analyze its phagocytic function, as well as its impact on tumor cell migration, proliferation, and apoptosis. Not only that, the inhibitory effect of iBMDMs on tumor growth was detected through subcutaneous tumor loading, while the tumor tissue was paraffin sectioned and flow cytometry was used to detect its impact on the tumor microenvironment. Results: In this study, we demonstrated iBMDMs exhibited the features of rapid proliferation and long-term survival. We also compared iBMDMs with RAW264.7 cell line and mouse primary BMDMs with in vitro and in vivo experiments, indicating that the iBMDMs could undergo the same polarization response as normal macrophages with no obvious cellular morphology changes after polarization. What's more, iBMDMs owned stronger phagocytosis and pro-apoptosis functions on tumor cells. In addition, M1-polarized iBMDMs could maintain the anti-tumor phenotypes and domesticated the recruited macrophages of receptor mice, which further improved the TIME and repressed tumor growth. Discussion: iBMDMs can serve as a good object for the function and mechanism study of macrophages and the optional source of macrophage immunotherapy.


Asunto(s)
Fenotipo , Animales , Ratones , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos/inmunología , Proliferación Celular , Línea Celular Tumoral , Ratones Endogámicos C57BL , Apoptosis , Fagocitosis , Movimiento Celular/inmunología
4.
Molecules ; 29(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38474524

RESUMEN

The Sc(OTf)3-catalyzed dearomative [5+1] annulations between readily available 3-aminophenols and O-alkyl ortho-oxybenzaldehydes were developed for synthesis of spiro[chromane-3,1'-cyclohexane]-2',4'-dien-6'-ones. The "two-birds-with-one-stone" strategy was disclosed by the dearomatization of phenols and direct α-C(sp3)-H bond functionalization of oxygen through cascade condensation/[1,5]-hydride transfer/dearomative-cyclization process. In addition, the antifungal activity assay and derivatizations of products were conducted to further enrich the utility of the structure.

5.
ACS Pharmacol Transl Sci ; 7(1): 236-248, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38230281

RESUMEN

Optogenetics is a novel biotechnology widely used to precisely manipulate a specific peripheral sensory neuron or neural circuit. However, the use of optogenetics to assess the therapeutic efficacy of analgesics is elusive. In this study, we generated a transgenic mouse stain in which all primary somatosensory neurons can be optogenetically activated to mimic neuronal hyperactivation in the neuropathic pain state for the assessment of analgesic effects of drugs. A transgenic mouse was generated using the advillin-Cre line mated with the Ai32 strain, in which channelrhodopsin-2 fused to enhanced yellow fluorescence protein (ChR2-EYFP) was conditionally expressed in all types of primary somatosensory neurons (advillincre/ChR2+/+). Immunofluorescence and transdermal photostimulation on the hindpaws were used to verify the transgenic mice. Optical stimulation to evoke pain-like paw withdrawal latency was used to assess the analgesic effects of a series of drugs. Injury- and pain-related molecular biomarkers were investigated with immunohistofluorescence. We found that the expression of ChR2-EYFP was observed in many primary afferents of paw skin and sciatic nerves and in primary sensory neurons and laminae I and II of the spinal dorsal horns in advillincre/ChR2+/+ mice. Transdermal blue light stimulation of the transgenic mouse hindpaw evoked nocifensive paw withdrawal behavior. Treatment with gabapentin, some channel blockers, and local anesthetics, but not opioids or COX-1/2 inhibitors, prolonged the paw withdrawal latency in the transgenic mice. The analgesic effect of gabapentin was also verified by the decreased expression of injury- and pain-related molecular biomarkers. These optogenetic mice provide a promising model for assessing the therapeutic efficacy of analgesics in neuropathic pain.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123959, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38290280

RESUMEN

In this study, we have constructed a ratiometric fluorescence sensor for sensitive sensing of α-glucosidase activity based on WS2 QDs/ CoOOH nanosheet system. In this system, as an oxidase-imimicking nanomaterial, CoOOH nanosheet could convert o-phenylenediamine into 2,3-diaminophenazine (DAP), which had a high fluorescence emission at 575 nm. The DAP subsequently could quench the fluorescence of WS2 QDs via the inner filter effect (IFE). L-Ascorbic acid-2-O-α-D-glucopyranose could be hydrolyzed by α-glucosidase to yield ascorbic acid. CoOOH nanosheet can be converted to Co2+ ions by ascorbic acid, leading to the fluorescence decrease of DAP and the fluorescence recovery of WS2 QDs. Therefore, a novel ratio fluorescence sensing strategy was established for α-glucosidase detection based on WS2 QDs/CoOOH nanosheet system. This WS2 QDs/CoOOH nanosheet system has a low detection limit of 0.009 U/mL for α-Glu assay. The proposed strategy succeeded in detecting α-Glu in human serum samples.


Asunto(s)
Cobalto , Puntos Cuánticos , alfa-Glucosidasas , Humanos , Fluorescencia , Colorantes Fluorescentes , Óxidos , Espectrometría de Fluorescencia , Ácido Ascórbico , Límite de Detección
7.
New Phytol ; 242(1): 278-288, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37984873

RESUMEN

Mimicry is the phenomenon in which one species (the mimic) closely resembles another (the model), enhancing its own fitness by deceiving a third party into interacting with it as if it were the model. In plants, mimicry is used primarily to gain fitness by withholding rewards from mutualists or deterring herbivores cost-effectively. While extensive work has been documented on putative defence mimicry, limited investigation has been conducted in the field of chemical mimicry. In this study, we used field experiments, chemical analyses, behavioural assays, and electrophysiology, to test the hypothesis that the birthwort Aristolochia delavayi employs chemical mimicry by releasing leaf scent that closely resembles stink bug defensive compounds and repels vertebrate herbivores. We show that A. delavayi leaf scent is chemically and functionally similar to the generalized defensive volatiles of stink bugs and that the scent effectively deters vertebrate herbivores, likely through the activation of TRPA1 channels via (E)-2-alkenal compounds. This study provides an unequivocal example of chemical mimicry in plants, revealing intricate dynamics between plants and vertebrate herbivores. Our study underscores the potency of chemical volatiles in countering vertebrate herbivory, urging further research to uncover their potentially underestimated importance.


Asunto(s)
Aristolochia , Heterópteros , Animales , Herbivoria , Aristolochia/química , Aristolochia/fisiología , Heterópteros/fisiología , Vertebrados , Plantas
8.
Pathol Res Pract ; 252: 154920, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37948998

RESUMEN

Clinical data indicates that SARS-CoV-2 infection-induced respiratory failure is a fatal condition for severe COVID-19 patients. However, the pathological alterations of different types of respiratory failure remained unknown for severe COVID-19 patients. This study aims to evaluate whether there are differences in the performance of various types of respiratory failure in severe COVID-19 patients and investigate the pathological basis for these differences. The lung tissue sections of severe COVID-19 patients were assessed for the degree of injury and immune responses. Transcriptome data were used to analyze the molecular basis in severe COVID-19 patients. Severe COVID-19 patients with combined oxygenation and ventilatory failure presented more severe pulmonary fibrosis, airway obstruction, and prolonged disease course. The number of M2 macrophages increased with the degree of fibrosis in patients, suggesting that it may be closely related to the development of pulmonary fibrosis. The co-existence of pro-inflammatory and anti-inflammatory cytokines in the pulmonary environment could also participate in the progression of pulmonary fibrosis. Furthermore, the increased apoptosis in the lungs of COVID-19 patients with severe pulmonary fibrosis may represent a critical factor linking sustained inflammatory responses to fibrosis. Our findings indicate that during the extended phase of COVID-19, antifibrotic and antiapoptotic treatments should be considered in conjunction with the progression of the disease.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , Insuficiencia Respiratoria , Humanos , COVID-19/complicaciones , COVID-19/patología , Fibrosis Pulmonar/patología , Autopsia , SARS-CoV-2 , Pulmón/patología , Macrófagos/patología , Insuficiencia Respiratoria/patología , Apoptosis
9.
NPJ Precis Oncol ; 7(1): 110, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907595

RESUMEN

The genomic instability (GI) /homologous recombination deficiency (HRD) score, calculated as the sum of the events of loss of heterozygosity (LOH), large-scale state transition (LST) and telomere allele imbalance (TAI), is used to guide the choice of treatment in several cancers, but its relationship with genomic features, clinicopathological characteristics and prognosis in lung cancer is poorly understood, which could lead to population bias in prospective studies. We retrospectively analyzed 1011 lung cancer patients whose tumor samples were successfully profiled by high-throughput sequencing panel including GI/HRD score. Alterations of many cancer suppressor genes were associated with higher GI/HRD scores, biallelic inactivation of TP53 was correlated with a high GI/HRD score. A combination of two gene alterations exhibited a higher GI/HRD scores than single gene alterations. The GI/HRD score was associated with advanced stages in lung adenocarcinoma but not in lung squamous cell carcinoma. Furthermore, patients with higher GI/HRD scores had significantly shorter overall survival and progression-free survival than patients with lower GI/HRD scores. Finally, patients with a combination of a higher GI/HRD scores and TP53 alteration exhibited an extremely poor prognosis compared with patients with a lower GI/HRD scores and wild-type TP53 (overall survival, training cohort, hazard ratio (HR) = 8.56, P < 0.001; validation cohort, HR = 6.47, P < 0.001; progression-free survival, HR = 4.76, P < 0.001). Our study revealed the prognostic value of the GI/HRD score in lung adenocarcinoma, but not for all lung cancer. Moreover, the combination of the GI/HRD score and TP53 status could be a promising strategy to predict the prognosis of patients with lung adenocarcinoma.

10.
Genes (Basel) ; 14(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-38002938

RESUMEN

PANoptosis is a newly recognized inflammatory pathway for programmed cell death (PCD). It participates in regulating the internal environment, homeostasis, and disease process in various complex ways and plays a crucial role in tumor development, but its mechanism of action is still unclear. In this study, we comprehensively analyzed the expression of 14 PANoptosis-related genes (PANRGs) in 28 types of tumors. Most PANRGs are upregulated in tumors, including Z-DNA binding protein 1 (ZBP1), nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3), caspase (CASP) 1, CASP6, CASP8, PYCARD, FADD, MAP3K7, RNF31, and RBCK1. PANRGs are highly expressed in GBM, LGG, and PAAD, while their levels in ACC are much lower than those in normal tissues. We found that both the CNV and SNV gene sets in BLCA are closely related to survival performance. Subsequently, we conducted clustering and LASSO analysis on each tumor and found that the inhibitory and the stimulating immune checkpoints positively correlate with ZBP1, NLRP3, CASP1, CASP8, and TNFAIP3. The immune infiltration results indicated that KIRC is associated with most infiltrating immune cells. According to the six tumor dryness indicators, PANRGs in LGG show the strongest tumor dryness but have a negative correlation with RNAss. In KIRC, LIHC, and TGCT, most PANRGs play an important role in tumor heterogeneity. Additionally, we analyzed the linear relationship between PANRGs and miRNA and found that MAP3K7 correlates to many miRNAs in most cancers. Finally, we predicted the possible drugs for targeted therapy of the cancers. These data greatly enhance our understanding of the components of cancer and may lead to the discovery of new biomarkers for predicting immunotherapy response and improving the prognosis of cancer patients.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Pronóstico , Inmunoterapia , MicroARNs/genética , Neoplasias/genética , Neoplasias/terapia
11.
Am J Pathol ; 193(12): 2111-2121, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741452

RESUMEN

Tumor mutation burden (TMB) is a potential biomarker for evaluating the prognosis and response to immune checkpoint inhibitors, but its costly and time-consuming method of measurement limits its widespread application. This study aimed to identify the TMB-related histopathologic features from hematoxylin and eosin slides and explore their prognostic value in gliomas. TMB-related features were detected using a graph convolutional neural network from whole-slide images of patients from The Cancer Genome Atlas data set (619 patients), and the correlation between features and TMB was evaluated in an external validation set (237 patients). TMB-related features were used for predicting overall survival (OS) of patients to investigate whether these features have potential for prognostic prediction. Moreover, biological pathways underlying the prognostic value of the features were further explored. Histopathologic features derived from whole-slide images were significantly associated with patient TMB (P = 0.007 in the external validation set). TMB-related features showed excellent performance for OS prediction, and patients with lower-grade gliomas could be further stratified into different risk groups according to the features (P = 0.00013; hazard ratio, 4.004). Pathways involved in the cell cycle and execution of immune response were enriched in patients with higher OS risk. The TMB-related features could be used to estimate TMB and aid in prognostic risk stratification of patients with glioma with dysregulated biological pathways.


Asunto(s)
Aprendizaje Profundo , Glioma , Humanos , Glioma/genética , Ciclo Celular , División Celular , Mutación , Biomarcadores de Tumor , Pronóstico
12.
FASEB J ; 37(8): e23071, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37389924

RESUMEN

The sustained release of profibrotic cytokines, mainly transforming growth factor-ß (TGF-ß), leads to the occurrence of kidney fibrosis and chronic kidney disease (CKD). Connective tissue growth factor (CTGF) appears to be an alternative target to TGF-ß for antifibrotic therapy in CKD. In this study, we found that long noncoding RNA AI662270 was significantly increased in various renal fibrosis models. In vivo, ectopic expression of AI662270 alone was sufficient to activate interstitial fibroblasts and drive kidney fibrosis, whereas inhibition of AI662270 blocked the activation of interstitial fibroblasts and ameliorated kidney fibrosis in various murine models. Mechanistic studies revealed that overexpression of AI662270 significantly increased CTGF product, which was required for the role of AI662270 in driving kidney fibrosis. Furthermore, AI662270 binds to the CTGF promoter and directly interacts with METTL3, the methyltransferase of RNA N6 -methyladenosine (m6 A) modification. Functionally, AI662270-mediated recruitment of METTL3 increased the m6 A methylation of CTGF mRNA and consequently enhanced CTGF mRNA stability. In conclusion, our results support that AI662270 promotes CTGF expression at the posttranscriptional stage by recruiting METTL3 to the CTGF promoter and depositing m6 A modifications on the nascent mRNA, thereby, uncovering a novel regulatory mechanism of CTGF in the pathogenesis of kidney fibrosis.


Asunto(s)
ARN Largo no Codificante , Insuficiencia Renal Crónica , Animales , Ratones , Factor de Crecimiento del Tejido Conjuntivo/genética , Riñón , Metiltransferasas/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Factor de Crecimiento Transformador beta/genética
13.
Materials (Basel) ; 16(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241262

RESUMEN

Silicon inverted pyramids have been shown to exhibit superior SERS properties compared to ortho-pyramids, yet low-cost, simple preparation processes are lacking at present. This study demonstrates a simple method, silver-assisted chemical etching combined with PVP, to construct silicon inverted pyramids with a uniform size distribution. Two types of Si substrates for surface-enhanced Raman spectroscopy (SERS) were prepared via silver nanoparticles deposited on the silicon inverted pyramids by electroless deposition and radiofrequency sputtering, respectively. The experiments were conducted using rhodamine 6G (R6G), methylene blue (MB) and amoxicillin (AMX) molecules to test the SERS properties of the Si substrates with inverted pyramids. The results indicate that the SERS substrates show high sensitivity to detect the above molecules. In particular, the sensitivity and reproducibility of the SERS substrates with a denser silver nanoparticle distribution, prepared by radiofrequency sputtering, are significantly higher than those of the electroless deposited substrates to detect R6G molecules. This study sheds light on a potential low-cost and stable method for preparing silicon inverted pyramids, which is expected to replace the costly commercial Klarite SERS substrates.

14.
Pest Manag Sci ; 79(10): 3757-3766, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37198750

RESUMEN

BACKGROUND: Controlled-release pesticide formulations have emerged as a promising approach towards sustainable pest control. Herein, an environment-friendly formulation of insecticide chlorantraniliprole (CAP) was fabricated through a simple approach of coprecipitation-based synchronous encapsulation by chitosan (CTS), with carrier-pesticide interaction mechanism and release behavior investigated. RESULTS: The resulting CAP/CTS controlled-release formulation (CCF) showed a good loading content of 28.1% and a high encapsulation efficiency of 75.6%. Instrument determination in combination with molecular dynamics (MD) simulations displayed that the primary interactions between CAP and CTS were physical adsorption and complicated hydrogen (H)-bonds, which formed dominantly between NH in amides [or nitrogen (N) in ring structures] of CAP and hydroxyl (or amino) groups of CTS, as well as oxygen (O) in CAP with hydrogen in CTS or H2 O molecules. The in vitro release tests exhibited obvious pH/temperature sensitivity, with release dynamics following the first-order or Ritger-Peppas model. As the temperature increased, the CAP release process of the Ritger-Peppas model changed from Case-II to anomalous transport, and ultimately to a Fickian diffusion mechanism. The control effect against Plutella xylostella larvae also was evaluated by toxicity tests, where comparable efficacy of CCF to the commercial suspension concentrate was obtained. CONCLUSION: The innovative, easy-to-prepare CCF can be used as a formulation with obvious pH/temperature sensitivity and good efficacy on target pests. This work contributes to the development of efficient and safe pesticide delivery systems, especially using the natural polymer materials as carriers. © 2023 Society of Chemical Industry.


Asunto(s)
Quitosano , Insecticidas , Plaguicidas , Animales , Quitosano/química , Preparaciones de Acción Retardada
15.
Anal Chim Acta ; 1265: 341221, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37230561

RESUMEN

The development of cost-effective and easy-to-use strategies for the detection of ascorbic acid (AA) and acid phosphatase (ACP) is in high demand but challenging. Thus, we report a novel colorimetric platform based on Fe-N/C single atom nanozyme with efficient oxidase mimicking activity for their highly sensitive detection. The designed Fe-N/C single atom nanozyme can directly oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue oxidation product (oxTMB) in the absence of H2O2. In addition, L-ascorbic acid 2-phosphate can be hydrolyzed to ascorbic acid in the presence of ACP, which inhibits the oxidation reaction and results in a significant bleaching of the blue color. Based on these phenomena, a novel colorimetric assay with high catalytic activity was developed for the determination of ascorbic acid and acid phosphatase with detection limits of 0.092 µM and 0.048 U/L, respectively. Notably, this strategy was successfully applied to the determination of ACP in human serum samples and evaluate ACP inhibitors, indicating its potential as a valuable tool for clinical diagnosis and research.


Asunto(s)
Fosfatasa Ácida , Oxidorreductasas , Humanos , Peróxido de Hidrógeno , Límite de Detección , Ácido Ascórbico , Colorimetría/métodos
16.
Animals (Basel) ; 13(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37238142

RESUMEN

A new species of the genus Troglonectes is described based on specimens from a karst cave in Andong Town, Xincheng County, Liuzhou City, Guangxi, China. Troglonectes canlinensis sp. nov. can be distinguished from its congener species by the following combination of characteristics: eye degenerated into a black spot; whole body covered by scales, except for the head, throat, and abdomen; incomplete lateral line; forked caudal fin; 8-10 gill rakers on the first gill arch; 13-14 branched caudal fin rays; 8-9 branched dorsal fin rays; 5-6 anal fin rays; 9-10 pectoral fin rays; upper adipose keel depth mostly 1/2 of the caudal peduncle depth; and caudal fin forked.

17.
Materials (Basel) ; 16(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37109980

RESUMEN

Silicon heterojunction (SHJ) solar cells are increasingly attracting attention due to their low-temperature processing, lean steps, significant temperature coefficient, and their high bifacial capability. The high efficiency and thin wafer nature of SHJ solar cells make them ideal for use as high-efficiency solar cells. However, the complicated nature of the passivation layer and prior cleaning render a well-passivated surface difficult to achieve. In this study, developments and the classification of surface defect removal and passivation technologies are explored. Further, surface cleaning and passivation technologies of high-efficiency SHJ solar cells within the last five years are reviewed and summarized.

18.
Phytomedicine ; 114: 154813, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37062137

RESUMEN

BACKGROUND: Tripterygium glycoside tablets (TGT) is the most common preparation from Tripterygium wilfordii Hook F, which is widely used in clinical for treating rheumatoid arthritis (RA) and other autoimmune diseases. However, its serious reproductive toxicity limits its application. PURPOSE: This study aimed to elucidate the toxic effects of TGT on the reproductive system of male RA rats and its potential toxic components and mechanism. METHODS: Collagen-induced arthritis (CIA) rat model was established, and TGT suspension was given at low, medium, and high doses. Gonadal index, pathological changes, and the number of spermatogenic cells were used to evaluate the toxic effects of TGT on the reproductive system. Non-targeted metabolomics of testicular tissue was conducted by UHPLC-QTOF/MS. Combined with network toxicology, the key targets of TGT-induced reproductive toxicity were screened and RT-qPCR was used to validation. In vitro toxicity of 19 components of TGT was evaluated using TM3 and TM4 cell lines. Molecular docking was used to predict the interaction between toxic components and key targets. RESULTS: TGT reduced testicular and epididymis weight. Pathology analysis showed a lot of deformed and atrophic spermatogenic tubules. The number of spermatogenic cells decreased significantly (P<0.0001). A total of 58 different metabolites including platelet-activating factor (PAF), lysophosphatidylcholine (Lyso PC), phosphatidylinositol (PI), glutathione (GSH), and adenosine monophosphate (AMP) were identified by testicular metabolomics. Glycerophospholipid metabolism, ether lipid metabolism, and glutathione metabolism were key pathways responsible for the reproductive toxicity of TGT. Ten key reproductive toxicity targets were screened by network toxicology. The cytotoxicity test showed that triptolide, triptonide, celastrol, and demethylzeylasteral could significantly reduce the viability of TM3 and TM4 cells. Alkaloids had no apparent toxic effects. Molecular docking showed that the four toxic components had a good affinity with 10 key targets. All binding energies were less than -7 kcal/mol. The RT-qPCR results showed the Cyp19a1 level was significantly up-regulated. Pik3ca and Pik3cg levels were significantly down-regulated. CONCLUSION: Through testicular metabolomics, we found that TGT may cause reproductive toxicity through CYP19A1, PIK3CA, and PIK3CG three target, which was preliminarily revealed. This study laid the foundation for elucidating the toxicity mechanism of TGT and evaluating its safety and quality.


Asunto(s)
Artritis Reumatoide , Glicósidos Cardíacos , Medicamentos Herbarios Chinos , Ratas , Masculino , Animales , Glicósidos/uso terapéutico , Tripterygium/química , Simulación del Acoplamiento Molecular , Medicamentos Herbarios Chinos/farmacología , Glicósidos Cardíacos/uso terapéutico , Testículo , Artritis Reumatoide/tratamiento farmacológico , Comprimidos , Citocromo P-450 CYP1A1
19.
J Mater Chem B ; 11(12): 2727-2732, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36880155

RESUMEN

In this work, a novel method for the colorimetric sensing of α-glucosidase (α-Glu) activity was developed based on CoOOH nanoflakes (NFs), which exhibit efficient oxidase-mimicking activity. Colorless 3,3',5,5'-tetramethylbenzidine (TMB) can be oxidized by CoOOH NFs into blue-colored oxidized TMB (oxTMB) in the absence of H2O2. L-Ascorbic acid-2-O-α-D-glucopyranose (AAG) can be hydrolysed by α-glucosidase to produce ascorbic acid, resulting in a significant decrease of catalytic activity of CoOOH NFs. Thus, a colorimetric α-glucosidase activity detection method was designed with a limit of detection of 0.0048 U mL-1. Furthermore, the designed sensing platform exhibits favorable applicability for the α-glucosidase (α-Glu) activity assay in real samples. Meanwhile, this method can be expanded to study the inhibitors of α-Glu. Finally, the as-proposed method combined with a smartphone would be a color recognizer, which was successfully applied for the determination of α-Glu activity in human serum samples.


Asunto(s)
Peróxido de Hidrógeno , alfa-Glucosidasas , Humanos , Óxidos , Oxidorreductasas
20.
Ann Bot ; 132(1): 15-28, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36722368

RESUMEN

BACKGROUND AND AIMS: Species of the genus Buddleja in Asia are mainly distributed in the Sino-Himalayan region and form a challenging taxonomic group, with extensive hybridization and polyploidization. A phylogenetic approach to unravelling the history of reticulation in this lineage will deepen our understanding of the speciation in biodiversity hotspots. METHODS: For this study, we obtained 80 accessions representing all the species in the Asian Buddleja clade, and the ploidy level of each taxon was determined by flow cytometry analyses. Whole plastid genomes, nuclear ribosomal DNA, single nucleotide polymorphisms and a large number of low-copy nuclear genes assembled from genome skimming data were used to investigate the reticulate evolutionary history of Asian Buddleja. Complex cytonuclear conflicts were detected through a comparison of plastid and species trees. Gene tree incongruence was also analysed to detect any reticulate events in the history of this lineage. KEY RESULTS: Six hybridization events were detected, which are able to explain the cytonuclear conflict in Asian Buddleja. Furthermore, PhyloNet analysis combining species ploidy data indicated several allopolyploid speciation events. A strongly supported species tree inferred from a large number of low-copy nuclear genes not only corrected some earlier misinterpretations, but also indicated that there are many Asian Buddleja species that have been lumped mistakenly. Divergent time estimation shows two periods of rapid diversification (8-10 and 0-3 Mya) in the Asian Buddleja clade, which might coincide with the final uplift of the Hengduan Mountains and Quaternary climate fluctuations, respectively. CONCLUSIONS: This study presents a well-supported phylogenetic backbone for the Asian Buddleja species, elucidates their complex and reticulate evolutionary history and suggests that tectonic activity, climate fluctuations, polyploidization and hybridization together promoted the diversification of this lineage.


Asunto(s)
Buddleja , Genoma de Plastidios , Scrophulariaceae , Filogenia , Poliploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA