Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2392651, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39155772

RESUMEN

Ebola disease is a lethal viral hemorrhagic fever caused by ebolaviruses within the Filoviridae family with mortality rates of up to 90%. Monoclonal antibody (mAb) based therapies have shown great potential for the treatment of EVD. However, the potential emerging ebolavirus isolates and the negative effect of decoy protein on the therapeutic efficacy of antibodies highlight the necessity of developing novel antibodies to counter the threat of Ebola. Here, 11 fully human mAbs were isolated from transgenic mice immunized with GP protein and recombinant vesicular stomatitis virus-bearing GP (rVSV-EBOV GP). These mAbs were divided into five groups according to their germline genes and exhibited differential binding activities and neutralization capabilities. In particular, mAbs 8G6, 2A4, and 5H4 were cross-reactive and bound at least three ebolavirus glycoproteins. mAb 4C1 not only exhibited neutralizing activity but no cross-reaction with sGP. mAb 7D8 exhibited the strongest neutralizing capacity. Further analysis on the critical residues for the bindings of 4C1 and 8G6 to GPs was conducted using antibodies complementarity-determining regions (CDRs) alanine scanning. It has been shown that light chain CDR3 played a crucial role in binding and neutralization and that any mutation in CDRs could not improve the binding of 4C1 to sGP. Importantly, mAbs 7D8, 8G6, and 4C1 provided complete protections against EBOV infection in a hamster lethal challenge model when administered 12 h post-infection. These results support mAbs 7D8, 8G6, and 4C1 as potent antibody candidates for further investigations and pave the way for further developments of therapies and vaccines.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Ebolavirus/inmunología , Ebolavirus/genética , Anticuerpos Monoclonales/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Anticuerpos Antivirales/inmunología , Cricetinae , Ratones , Anticuerpos Neutralizantes/inmunología , Humanos , Ratones Transgénicos , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Reacciones Cruzadas
2.
Int J Biol Macromol ; 277(Pt 1): 134151, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059534

RESUMEN

Japanese encephalitis (JE), a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV), poses a serious threat to global public health. The low viremia levels typical in JEV infections make RNA detection challenging, necessitating early and rapid diagnostic methods for effective control and prevention. This study introduces a novel one-pot detection method that combines recombinant enzyme polymerase isothermal amplification (RPA) with CRISPR/EsCas13d targeting, providing visual fluorescence and lateral flow assay (LFA) results. Our portable one-pot RPA-EsCas13d platform can detect as few as two copies of JEV nucleic acid within 1 h, without cross-reactivity with other pathogens. Validation against clinical samples showed 100 % concordance with real-time PCR results, underscoring the method's simplicity, sensitivity, and specificity. This efficacy confirms the platform's suitability as a novel point-of-care testing (POCT) solution for detecting and monitoring the JE virus in clinical and vector samples, especially valuable in remote and resource-limited settings.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Técnicas de Amplificación de Ácido Nucleico , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Virus de la Encefalitis Japonesa (Especie)/genética , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Encefalitis Japonesa/diagnóstico , Encefalitis Japonesa/virología , Técnicas de Diagnóstico Molecular/métodos , Porcinos , Sistemas CRISPR-Cas , Sensibilidad y Especificidad , ARN Viral/genética , ARN Viral/análisis
3.
Virulence ; 15(1): 2384564, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39072452

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease that threatens the global swine industry. Recent studies have focused on the damage that PRRSV causes to the reproductive system of male pigs, although pathological research is lacking. Therefore, we examined the pathogenic mechanisms in male piglets infected with PRRSV. Gross and histopathological changes indicated that PRRSV affected the entire reproductive system, as confirmed via immunohistochemical analysis. PRRSV infected Sertoli cells and spermatogonia. To test the new hypothesis that PRRSV infection in piglets impairs blood - testis barrier (BTB) development, we investigated the pathology of PRRSV damage in the BTB. PRRSV infection significantly decreased the quantity and proliferative capacity of Sertoli cells constituting the BTB. Zonula occludens-1 and ß-catenin were downregulated in cell - cell junctions. Transcriptome analysis revealed that several crucial genes and signalling pathways involved in the growth and development of Leydig cells, Sertoli cells, and tight junctions in the testes were downregulated. Apoptosis, necroptosis, inflammatory, and oxidative stress-related pathways were activated, whereas hormone secretion-related pathways were inhibited. Many Sertoli cells and spermatogonia underwent apoptosis during early differentiation. Infected piglets exhibited disrupted androgen secretion, leading to significantly reduced testosterone and anti-Müllerian hormone levels. A cytokine storm occurred, notably upregulating cytokines such as tumour necrosis factor-α and interleukin-6. Markers of oxidative-stress damage (i.e. H2O2, malondialdehyde, and glutathione) were upregulated, whereas antioxidant-enzyme activities (i.e. superoxide dismutase, total antioxidant capacity, and catalase) were downregulated. Our results demonstrated that PRRSV infected multiple organs in the male reproductive system, which impaired growth in the BTB.


Asunto(s)
Barrera Hematotesticular , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Células de Sertoli , Testículo , Animales , Masculino , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Células de Sertoli/virología , Células de Sertoli/metabolismo , Barrera Hematotesticular/virología , Testículo/virología , Testículo/patología , Espermatogonias/virología , Apoptosis , Células Intersticiales del Testículo/virología , Citocinas/metabolismo , Testosterona/sangre , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética
4.
Anal Chim Acta ; 1318: 342918, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39067912

RESUMEN

Pseudorabies viruses (PRV) pose a major threat to the global pig industry and public health. Rapid, intuitive, affordable, and accurate diagnostic testing is critical for controlling and eradicating infectious diseases. In this study, a portable detection platform based on RPA-CRISPR/EsCas13d was developed. The platform exhibits high sensitivity (1 copy/µL), good specificity, and no cross-reactivity with common pathogens. The platform uses rapid preamplification technology to provide visualization results (lateral flow assays or visual fluorescence) within 1 h. Fifty pig samples (including tissues, oral fluids, and serum) were tested using this platform and real-time quantitative polymerase chain reaction (qPCR), showing 34.0 % (17 of 50) PRV positivity with the portable CRISPR/EsCas13d dual-readout platform, consistent with the qPCR results. These results highlight the stability, sensitivity, efficiency, and low equipment requirements of the portable platform. Additionally, a novel point-of-care test is being developed for clinical use in remote rural and resource-limited areas, which could be a prospective measure for monitoring the progression of pseudorabies and other infectious diseases worldwide.


Asunto(s)
Sistemas CRISPR-Cas , Herpesvirus Suido 1 , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/aislamiento & purificación , Animales , Porcinos , Sistemas CRISPR-Cas/genética , Seudorrabia/diagnóstico , Seudorrabia/virología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/diagnóstico
5.
Cells ; 13(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39056780

RESUMEN

Background: Angiogenesis is essential for various physiological and pathological processes, such as embryonic development and cancer cell proliferation, migration, and invasion. Long noncoding RNAs (lncRNAs) play pivotal roles in normal homeostasis and disease processes by regulating gene expression through various mechanisms, including competing endogenous RNAs (ceRNAs) of target microRNAs (miRNAs). The lncRNA MYU is known to promote prostate cancer proliferation via the miR-184/c-Myc regulatory axis and to be upregulated in vascular endothelial cells under hypoxic conditions, which often occurs in solid tumors. In the present study, we investigated whether MYU might affect cancer growth by regulating angiogenesis in vascular endothelial cells under hypoxia. Methods: The expression of MYU-regulated miR-23a-3p and interleukin-8 (IL-8) in HUVEC cell lines was examined using qRT-PCR. The CCK-8 assay, EdU assay, wound-healing assay, and tube-formation assay were used to assess the effects of MYU on cell proliferation, migration, and tube formation of HUVEC cells in vitro. The dual-luciferase reporter assay was performed to examine the effects of miR-23a-3p on MYU and IL-8 expression. Results: We found that the overexpression of MYU and knockdown of miR-23a-3p in human umbilical vein endothelial cells (HUVECs) under hypoxia promoted cell proliferation, migration, and tube formation. Mechanistically, MYU was shown to bind competitively to miR-23a-3p, thereby preventing miR-23a-3p binding to the 3' untranslated region of IL-8 mRNA. In turn, increased production of pro-angiogenic IL-8 promoted HUVEC proliferation, migration, and tube formation under hypoxia. Conclusion: This study identified a new role for lncRNA MYU as a ceRNA for miR-23a-3p and uncovered a novel MYU-miR-23a-3p-IL-8 regulatory axis for angiogenesis. MYU and/or miR-23a-3p may thus represent new targets for the treatment of hypoxia-related diseases by promoting angiogenesis.


Asunto(s)
Hipoxia de la Célula , Movimiento Celular , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Interleucina-8 , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proliferación Celular/genética , Hipoxia de la Célula/genética , Movimiento Celular/genética , Interleucina-8/metabolismo , Interleucina-8/genética , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Células Endoteliales/metabolismo , Angiogénesis
6.
Research (Wash D C) ; 7: 0418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040920

RESUMEN

The prevalence of food allergies is increasing dramatically and causing serious public health concerns. Notably, melatonin metabolism imbalance in patients with food allergies; however, the role of melatonin in food allergies remains unclear. Here, we demonstrated that melatonin suppresses food allergy responses and reprograms the gut microbiota of food-allergic mice, while melatonin aggravates food allergy during gut microbiota depletion. Mechanistically, melatonin boosts the degranulation of mast cells by up-regulating the expression of membrane high-affinity immunoglobulin E (IgE) receptor (FcεRI). Melatonin increases the mRNA expression of Rabenosyn-5 (a component of factors for endosome recycling and Rab interactions) through melatonin receptor 2 (MT2)-extracellular signal-regulated kinase (ERK) signaling, thereby driving the recycling of FcεRI and elevating the abundance of membrane FcεRI. Likewise, the inhibition of MT2 attenuates melatonin-induced food allergy in mice with gut microbiota depletion. Collectively, our finding provides insights into the pathogenesis of food allergies and provides a potential therapeutic target for the prevention and treatment of food allergies.

7.
Front Microbiol ; 15: 1398631, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933022

RESUMEN

Commensal microbial-host interaction is crucial for host metabolism, growth, development, and immunity. However, research on microbial-host immunity in large animal models has been limited. This study was conducted to investigate the effects of the commensal microbiota on immune function in two model groups: germ-free (GF) and specific-pathogen-free (SPF) piglets. The weight and organ index of the spleen of the GF piglet were larger than those in the SPF piglet (P < 0.05). The histological structure of the red pulp area and mean area of germinal centers were larger in the SPF piglet than in the GF piglet (P < 0.05), whereas the areas of staining of B cells and T cells in the spleen and mesenteric lymph nodes (MLNs) were lower in the GF piglet (P < 0.05). We identified immune-related genes in the spleen and MLNs using RNA sequencing, and used real-time quantitative PCR to analyze the expression of core genes identified in gene set enrichment analysis. The expression levels of genes in the transforming growth factor-ß/SMAD3 signaling pathway, Toll-like receptor 2/MyD88/nuclear factor-κB signaling pathway, and pro-inflammatory factor genes IL-6 and TNF-α in the spleen and MLNs were higher in the SPF piglet and in splenic lymphocytes compared with those in the GF and control group, respectively, under treatment with acetic acid, propionic acid, butyric acid, lipopolysaccharide (LPS), or concanavalin A (ConA). The abundances of plasma cells, CD8++ T cells, follicular helper T cells, and resting natural killer cells in the spleen and MLNs were significantly greater in the SPF piglet than in the GF piglet (P < 0.05). In conclusion, the commensal microbiota influenced the immune tissue structure, abundances of immune cells, and expression of immune-related pathways, indicating the importance of the commensal microbiota for spleen and MLNs development and function. In our study, GF piglet was used as the research model, eliminating the interference of microbiota in the experiment, and providing a suitable and efficient large animal research model for exploring the mechanism of "microbial-host" interactions.

8.
BMC Vet Res ; 20(1): 239, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831363

RESUMEN

The porcine epidemic diarrhea virus (PEDV) infection inflicted substantial economic losses upon the global pig-breeding industry. This pathogen can infect all pigs and poses a particularly high fatality risk for suckling piglets. The S1 subunit of spike protein is a crucial target protein for inducing the particularly neutralizing antibodies that can intercept the virus-host interaction and neutralize virus infectivity. In the present study, the HEK293F eukaryotic expression system was successfully utilized to express and produce recombinant S1 protein. Through quantitative analysis, five monoclonal antibodies (mAbs) specifically targeting the recombinant S1 protein of PEDV were developed and subsequently evaluated using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry assay (FCA). The results indicate that all five mAbs belong to the IgG1 isotype, and their half-maximal effective concentration (EC50) values measured at 84.77, 7.42, 0.89, 14.64, and 7.86 pM. All these five mAbs can be utilized in ELISA, FCA, and IFA for the detection of PEDV infection. MAb 5-F9 exhibits the highest sensitivity to detect as low as 0.3125 ng/mL of recombinant PEDV-S1 protein in ELISA, while only 0.096 ng/mL of mAb 5-F9 is required to detect PEDV in FCA. The results from antigen epitope analysis indicated that mAb 8-G2 is the sole antibody capable of recognizing linear epitopes. In conclusion, this study has yielded a highly immunogenic S1 protein and five high-affinity mAbs specifically targeting the S1 protein. These findings have significant implications for early detection of PEDV infection and provide a solid foundation for further investigation into studying virus-host interactions.


Asunto(s)
Anticuerpos Monoclonales , Infecciones por Coronavirus , Ensayo de Inmunoadsorción Enzimática , Virus de la Diarrea Epidémica Porcina , Glicoproteína de la Espiga del Coronavirus , Virus de la Diarrea Epidémica Porcina/inmunología , Anticuerpos Monoclonales/inmunología , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Porcinos , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Anticuerpos Antivirales/inmunología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Células HEK293 , Humanos , Proteínas Recombinantes/inmunología , Ratones Endogámicos BALB C , Ratones , Técnica del Anticuerpo Fluorescente Indirecta/veterinaria
9.
Front Vet Sci ; 11: 1340849, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721154

RESUMEN

Introduction: Pigs are often used to study the intestinal development of newborns, particularly as preterm pig models that mimic the intestinal growth of human preterm infants. Neonatology's study of delivery mode's impact on neonatal development is crucial. Methods: We established 14 newborn pigs delivered via cesarean sections (C-section, at 113 days of gestational age, CS group) and 8 naturally born pigs were used as controls (at 114 days of gestational age, NF group). The impact of two alternative delivery procedures (C-section and natural birth) on the levels of short-chain fatty acids (SCFAs) and organic acids in the hepatic and intestines of newborn pigs were compared using metabolomics. The underlying molecular pathways are examined at the "protein-metabolite" level by integrating proteomic data. Results: The findings demonstrated that the mode of delivery changed the metabolism of SCFAs in newborn pigs, perhaps by affecting the physiology levels of cyclic intermediates such as lactate and malate in the pyruvate metabolic pathway. Additionally, by participating in the fatty acid metabolism pathway, two distinct proteins (FASN and HSD17B4) may impact the physiological concentration of these tiny metabolites. Discussion: In conclusion, this study provided reliable animal model data for understanding the physiological SCFA metabolic information and its affecting mechanism of large-gestational age preterm infants.

10.
Front Microbiol ; 15: 1402807, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800748

RESUMEN

Pigs are widely used as animal models in various studies related to humans. The interaction between the gut microbiota and the host has significant effects on the host's health and disease status. However, although there have been many studies investigating the pig gut microbiota, the findings have been inconsistent due to variations in rearing conditions. Interactions between the gut microbiota and host have not been fully explored in pigs. Specific pathogen-free (SPF) pigs are ideal non-primate large animals to study the interactions between the gut microbiota and the host. In this study, we performed high-throughput sequencing analysis of the gut microbiota and the gut tissue transcriptome of six SPF pigs to provide a systematic understanding of the composition, function, and spatial distribution of gut microbiota in SPF pigs. We identified significant differences in microbial diversity and functionality among different gastrointestinal tract sites. Metagenomics data analysis revealed significant differences in alpha diversity and beta diversity of microbiota in different gastrointestinal sites of SPF pigs. Additionally, transcriptomic data indicated significant differences in gene expression as well as KEGG and GO functional enrichment between the small intestine and large intestine. Furthermore, by combining microbial metagenomics and host transcriptomics analyses, specific correlations were found between gut microbiota and host genes. These included a negative correlation between the TCN1 gene and Prevotella dentalis, possibly related to bacterial metabolic pathways involving vitamin B12, and a positive correlation between the BDH1 gene and Roseburia hominis, possibly because both are involved in fatty acid metabolism. These findings lay the groundwork for further exploration of the co-evolution between the microbiota and the host, specifically in relation to nutrition, metabolism, and immunity. In conclusion, we have elucidated the diversity of the gut microbiota in SPF pigs and conducted a detailed investigation into the interactions between the gut microbiota and host gene expression. These results contribute to our understanding of the intricate dynamics between the gut microbiota and the host, offering important references for advancements in life science research, bioproduct production, and sustainable development in animal husbandry.

11.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791168

RESUMEN

The normal growth and development of skeletal muscle is essential for the health of the body. The regulation of skeletal muscle by intestinal microorganisms and their metabolites has been continuously demonstrated. Acetate is the predominant short-chain fatty acids synthesized by gut microbiota through the fermentation of dietary fiber; however, the underlying molecular mechanisms governing the interaction between acetate and skeletal muscle during the rapid growth stage remains to be further elucidated. Herein, specific pathogen-free (SPF) mice, germ-free (GF) mice, and germ-free mice supplemented with sodium acetate (GS) were used to evaluate the effects of acetate on the skeletal muscle growth and development of young mice with gut microbiota deficiency. We found that the concentration of serum acetate, body mass gain, succinate dehydrogenase activity, and expression of the myogenesis maker gene of skeletal muscle in the GS group were higher than those in the GF group, following sodium acetate supplementation. Furthermore, the transcriptome analysis revealed that acetate activated the biological processes that regulate skeletal muscle growth and development in the GF group, which are otherwise inhibited due to a gut microbiota deficiency. The in vitro experiment showed that acetate up-regulated Gm16062 to promote skeletal muscle cell differentiation. Overall, our findings proved that acetate promotes skeletal muscle growth and development in young mice via increasing Gm16062 expression.


Asunto(s)
Microbioma Gastrointestinal , Desarrollo de Músculos , Músculo Esquelético , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Acetatos/farmacología , Acetatos/metabolismo , Masculino , Acetato de Sodio/farmacología , Diferenciación Celular/efectos de los fármacos , Ratones Endogámicos C57BL
12.
Genome Res ; 34(2): 310-325, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38479837

RESUMEN

In diploid mammals, allele-specific three-dimensional (3D) genome architecture may lead to imbalanced gene expression. Through ultradeep in situ Hi-C sequencing of three representative somatic tissues (liver, skeletal muscle, and brain) from hybrid pigs generated by reciprocal crosses of phenotypically and physiologically divergent Berkshire and Tibetan pigs, we uncover extensive chromatin reorganization between homologous chromosomes across multiple scales. Haplotype-based interrogation of multi-omic data revealed the tissue dependence of 3D chromatin conformation, suggesting that parent-of-origin-specific conformation may drive gene imprinting. We quantify the effects of genetic variations and histone modifications on allelic differences of long-range promoter-enhancer contacts, which likely contribute to the phenotypic differences between the parental pig breeds. We also observe the fine structure of somatically paired homologous chromosomes in the pig genome, which has a functional implication genome-wide. This work illustrates how allele-specific chromatin architecture facilitates concomitant shifts in allele-biased gene expression, as well as the possible consequential phenotypic changes in mammals.


Asunto(s)
Cromatina , Cromosomas , Animales , Porcinos/genética , Cromatina/genética , Haplotipos , Cromosomas/genética , Genoma , Mamíferos/genética
13.
Gut Microbes ; 16(1): 2313769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38353638

RESUMEN

Melatonin has various physiological effects, such as the maintenance of circadian rhythms, anti-inflammatory functions, and regulation of intestinal barriers. The regulatory functions of melatonin in gut microbiota remodeling have also been well clarified; however, the role of gut microbiota in regulating host melatonin production remains poorly understood. To address this, we studied the contribution of gut microbiota to host melatonin production using gut microbiota-perturbed models. We demonstrated that antibiotic-treated and germ-free mice possessed diminished melatonin levels in the serum and elevated melatonin levels in the colon. The influence of the intestinal microbiota on host melatonin production was further confirmed by fecal microbiota transplantation. Notably, Lactobacillus reuteri (L. R) and Escherichia coli (E. coli) recapitulated the effects of gut microbiota on host melatonin production. Mechanistically, L. R and E. coli activated the TLR2/4/MyD88/NF-κB signaling pathway to promote expression of arylalkylamine N-acetyltransferase (AANAT, a rate-limiting enzyme for melatonin production), and MyD88 deficiency in colonic epithelial cells abolished the influence of intestinal microbiota on colonic melatonin production. Collectively, we revealed a specific underlying mechanism of gut microbiota to modulate host melatonin production, which might provide novel therapeutic ideas for melatonin-related diseases.


Asunto(s)
Microbioma Gastrointestinal , Melatonina , Animales , Ratones , Escherichia coli , Factor 88 de Diferenciación Mieloide/genética , Proteínas Adaptadoras Transductoras de Señales , Células Epiteliales
14.
J Virol Methods ; 325: 114885, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38228247

RESUMEN

Getah virus (GETV) is a mosquito-transmitted disease that affects animals, causing fever, aseptic meningitis, and abortion. Its prevalence in China poses risks to both animal health and public well-being. Currently, there is a scarcity of seroepidemiological data on GETV due to the absence of commercial antibody detection kits for pigs. The aim of this study is to develop a rapid, accurate, and sensitive ELISA, providing a reliable tool for GETV seroepidemiology and laying the foundation for future commercial assay development. In this study, we removed specific hydrophobic domains and intracellular structures from E2 proteins and constructed the recombinant plasmid pCold-TF-E2. The recombinant protein was expressed using a prokaryotic expression system, and efficient purification of the rE2 protein was achieved using a nickel affinity column. The purified rE2 protein is suitable for the development of an indirect ELISA (rE2 ELISA). Following the optimization of reaction conditions for the rE2-ELISA, the cut-off value was 0.356. Additionally, the rE2-ELISA method showed a positive rate of 37.1% for IgG antibodies against GETV when testing 986 pig clinical serum samples collected from pigs in Sichuan between May 2022 and September 2022. The rE2-ELISA method displayed a 95.1% overall agreement with VNT, boasting a sensitivity of 98.2% and a specificity of 92.6%. These results indicate that IgG ELISA based on rE2 protein is an efficient and economical method for the detection of GETV antibodies in pigs, facilitating the diagnosis and prevention of GETV.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Embarazo , Femenino , Animales , Porcinos , Estudios Seroepidemiológicos , Infecciones por Alphavirus/diagnóstico , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G
15.
Cell Prolif ; 57(3): e13552, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37905345

RESUMEN

Cebpa is a master transcription factor gene for adipogenesis. However, the mechanisms of enhancer-promoter chromatin interactions controlling Cebpa transcriptional regulation during adipogenic differentiation remain largely unknown. To reveal how the three-dimensional structure of Cebpa changes during adipogenesis, we generated high-resolution chromatin interactions of Cebpa in 3T3-L1 preadipocytes and 3T3-L1 adipocytes using circularized chromosome conformation capture sequencing (4C-seq). We revealed dramatic changes in chromatin interactions and chromatin status at interaction sites during adipogenic differentiation. Based on this, we identified five active enhancers of Cebpa in 3T3-L1 adipocytes through epigenomic data and luciferase reporter assays. Next, epigenetic repression of Cebpa-L1-AD-En2 or -En3 by the dCas9-KRAB system significantly down-regulated Cebpa expression and inhibited adipocyte differentiation. Furthermore, experimental depletion of cohesin decreased the interaction intensity between Cebpa-L1-AD-En2 and the Cebpa promoter and down-regulated Cebpa expression, indicating that long-range chromatin loop formation was mediated by cohesin. Two transcription factors, RXRA and PPARG, synergistically regulate the activity of Cebpa-L1-AD-En2. To test whether Cebpa-L1-AD-En2 plays a role in adipose tissue development, we injected dCas9-KRAB-En2 lentivirus into the inguinal white adipose tissue (iWAT) of mice to suppress the activity of Cebpa-L1-AD-En2. Repression of Cebpa-L1-AD-En2 significantly decreased Cebpa expression and adipocyte size, altered iWAT transcriptome, and affected iWAT development. We identified functional enhancers regulating Cebpa expression and clarified the crucial roles of Cebpa-L1-AD-En2 and Cebpa promoter interaction in adipocyte differentiation and adipose tissue development.


Asunto(s)
Adipogénesis , Cromatina , Animales , Ratones , Adipocitos , Adipogénesis/genética , Tejido Adiposo , Diferenciación Celular
16.
Anim Biotechnol ; 34(8): 3971-3977, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37906091

RESUMEN

This experiment was conducted to explore the effects of gut microbiota on neonatal diarrhea in a germ-free (GF) pig model. Twelve hysterectomy-derived GF piglets were housed in six sterile isolators. Among them, six piglets were treated as the GF group, and the other six piglets were orally introduced with healthy sow fecal suspension and regarded as the fecal microbiota transplantation (FMT) group. Another six piglets from natural birth were considered as the conventional (CV) group. The GF and FMT piglets were hand-fed with sterile milk powder for 21 days, and the CV piglets were suckled for the same days. Then, all piglets were fed with sterile feed for another 21 days. Results exhibited that the GF group's fecal score and moisture level were higher than those in the CV and FMT groups (p < 0.05). Meanwhile, the abundances of colonic AQP1 and AQP8 in the GF group were the greatest among these treatments (p < 0.05). However, FMT piglets had a lower fecal score in d 22-28 and d 29-35 than that in the CV piglets (p < 0.05). Collectively, the absence of gut microbiota may cause diarrhea in the piglet model, and transplantation of maternal fecal microbiota may reverse it.


Asunto(s)
Microbioma Gastrointestinal , Porcinos , Animales , Femenino , Diarrea/terapia , Diarrea/veterinaria , Trasplante de Microbiota Fecal , Heces
17.
J Pineal Res ; 75(2): e12899, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37477135

RESUMEN

Food allergy affects more than 500 million people in the world, and its prevalence is increasing at an alarming rate causing serious public health concerns; however, prevention and treatment methods are still under investigation and are relatively scarce so far. Insights on pathophysiology reveal a complex interplay of the immune cells (e.g., DCs, T cells, and B cells) resulting in allergy or tolerance. Studies have shown that melatonin metabolisms are altered in patients with allergic diseases, suggesting that melatonin might impact allergic diseases. Notably, melatonin can orchestrate the differentiation and function of immune cells. Additionally, the disease severities of many allergic diseases and the function of the immune system exhibit circadian rhythmicity. Therefore, melatonin, a rhythm regulator, may also act indirectly on the immune system through the circadian clock to regulate food allergies. Herein, we reviewed the impacts of melatonin on food allergy and its underlying regulatory mechanisms, providing a theoretical reference for melatonin as effective means of prevention and treatment for food allergy in the future.


Asunto(s)
Relojes Circadianos , Hipersensibilidad a los Alimentos , Melatonina , Humanos , Melatonina/metabolismo , Ritmo Circadiano/fisiología , Relojes Circadianos/fisiología , Hipersensibilidad a los Alimentos/tratamiento farmacológico
18.
Front Physiol ; 14: 1189422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520824

RESUMEN

Preterm birth will disrupt the pattern and course of organ development, which may result in morbidity and mortality of newborn infants. Large animal models are crucial resources for developing novel, credible, and effective treatments for preterm infants. This review summarizes the classification, definition, and prevalence of preterm birth, and analyzes the relationship between the predicted animal days and one human year in the most widely used animal models (mice, rats, rabbits, sheep, and pigs) for preterm birth studies. After that, the physiological characteristics of preterm pig models at different gestational ages are described in more detail, including birth weight, body temperature, brain development, cardiovascular system development, respiratory, digestive, and immune system development, kidney development, and blood constituents. Studies on postnatal development and adaptation of preterm pig models of different gestational ages will help to determine the physiological basis for survival and development of very preterm, middle preterm, and late preterm newborns, and will also aid in the study and accurate optimization of feeding conditions, diet- or drug-related interventions for preterm neonates. Finally, this review summarizes several accepted pediatric applications of preterm pig models in nutritional fortification, necrotizing enterocolitis, neonatal encephalopathy and hypothermia intervention, mechanical ventilation, and oxygen therapy for preterm infants.

19.
AMB Express ; 13(1): 74, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436550

RESUMEN

Pig producers have faced considerable economic losses due to porcine epidemic diarrhea virus (PEDV) infection, emphasizing the need for PEDV antibody development. The S1/S2 junction (S1S2J) cleavage site of the S protein of PEDV is one of the major determinants of coronavirus infection success. In this study, we specifically selected the S1S2J protein of PEDV-AJ1102 (a representative strain of the G2 type) as a target protein to immunize mice and generated monoclonal antibodies (mAbs) using hybridoma technology. Three mAbs with high-binding activities to the S1S2J protein and were obtained and further analyzed. To reveal the characterization of these mAbs, variable region genes of antibodies were studied by using DNA sequencing, thereby revealing differences in their CDR3 amino acid sequences. We then developed a new method to identify the isotypes of these three mAbs. Results showed that these three antibodies were of the IgM type. As for the functions of these three mAbs, indirect immunofluorescence assay confirmed their good binding ability to Vero E6 cells infected with the PEDV-SP-C strain (G1 type). Epitope analysis showed linear epitopes for all three mAbs. These antibodies were also used to detect infected cells via flow cytometry analysis. In summary, we prepared and examined three mAbs against PEDV-S1S2J. These mAbs can be employed as detection antibodies for diagnostic reagents and further developed for other applications. We also designed a novel technique for easy and cost-saving identification of isotypes of mouse mAbs. Our results lay a good foundation for the development of research on PEDV.

20.
Anim Biosci ; 36(10): 1508-1516, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37402459

RESUMEN

OBJECTIVE: To carry out a comprehensive production planning of the existing Rongchang pig population from both environmental and genetic aspects, and to establish a closed population with stable genetic diversity and strict pathogen control, it is necessary to fully understand the genetic background of the population. METHODS: We genotyped 54 specific pathogen free (SPF) Rongchang pigs using the Zhongxin-1 Porcine Breeding Array PLUS, calculated their genetic diversity parameters and constructed their families. In addition, we also counted the runs of homozygosity (ROH) of each individual and calculated the value of inbreeding coefficient based on ROH for each individual. RESULTS: Firstly, the results of genetic diversity analysis showed that the effective population size (Ne) of this population was 3.2, proportion of polymorphic markers (PN) was 0.515, desired heterozygosity (He) and observed heterozygosity (Ho) were 0.315 and 0.335. Ho was higher than He, indicating that the heterozygosity of all the selected loci was high. Secondly, combining the results of genomic relatedness analysis and cluster analysis, it was found that the existing Rongchang pig population could be divided into four families. Finally, we also counted the ROH of each individual and calculated the inbreeding coefficient value accordingly, whose mean value was 0.09. CONCLUSION: Due to the limitation of population size and other factors, the genetic diversity of this Rongchang pig population is low. The results of this study can provide basic data to support the development of Rongchang pig breeding program, the establishment of SPF Rongchang pig closed herd and its experimental utilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...