Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 634: 100-107, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36242915

RESUMEN

We have previously shown that monoamine oxidase A (MAO A) mediates prostate cancer growth and metastasis. Further, MAO A/Pten double knockout (DKO) mice were generated and demonstrated that the deletion of MAO A delayed prostate tumor development in the Pten knockout mouse model of prostate adenocarcinoma. Here, we investigated its effect on immune cells in the tumor microenvironment in MAO A/Pten DKO mouse model. Our results shows that Paraffin embedded prostate tissues from MAO A/Pten DKO mice had elevated markers of immune stimulation (CD8+ cytotoxic T cells, granzyme B, and IFNγ) and decreased expression of markers of immune suppression (FoxP3, CD11b, HIF-1-alpha, and arginase 1) compared to parental Pten knockouts (MAO A wildtype). CD11b+ myeloid derived suppressor cells (MDSC) were the primary immunosuppressive cell types in these tumors. The data suggest that deletion of MAO A reduces immune suppression in prostate tumors to enhance antitumor immunity in prostate cancer. Thus, MAO A inhibitor may alleviate immune suppression, increase the antitumor immune response and be used for cancer immunotherapy.


Asunto(s)
Próstata , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Próstata/patología , Monoaminooxidasa/genética , Neoplasias de la Próstata/patología , Terapia de Inmunosupresión , Microambiente Tumoral , Línea Celular Tumoral
2.
Oncogene ; 37(38): 5175-5190, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29844571

RESUMEN

Monoamine oxidase A (MAOA) is a mitochondrial enzyme, which degrades monoamine neurotransmitters and dietary amines and produces H2O2. Recent studies have shown increased MAOA expression in prostate cancer (PCa), glioma, and classical Hodgkin lymphoma. However, the biological function of MAOA in cancer development remains unknown. In this study, we investigated the role of MAOA in the development of prostate adenocarcinoma by creating a prostate-specific Pten/MAOA knockout (KO) mouse model, in which MAOA-floxP mouse was crossed with the conditional Pten KO PCa mouse that develops invasive PCa. In contrast to Pten KO mice, age-matched Pten/MAOA KO mice exhibited a significant decrease in both prostate size and the incidence of invasive cancer. We observed a significant decline in AKT phosphorylation and Ki67 expression in Pten/MAOA KO mice, which reduced epithelial cell growth and proliferation. As cancer stem cells (CSCs) are required for tumor initiation and growth, we investigated expression of OCT4 and NANOG in the setting of decreased MAOA expression. We found that both OCT4 and NANOG were significantly attenuated in the prostate epithelia of Pten/MAOA KO mice compared to Pten KO mice, which was confirmed with targeted knockdown of MAOA with a short-hairpin(sh) vector targeting MAOA compared to cells transfected with a control vector. Expression of other markers associated with the a stem cell phenotype, including CD44, α2ß1, and CD133 as well as HIF-1α+CD44+ stem cells were all decreased in shMAOA PCa cells compared with empty vector-transfected control cells. We also found spheroid formation ability in PCa cells was decreased when endogenous MAOA was suppressed by siRNA or MAOA inhibitor clorgyline in a colony formation assay. Using the TCGA database, elevated MAOA expression was associated with reduced Pten levels in high Gleason grade in patient samples. Further, we found that Pten-positive PCa cells were more resistant to clorgyline treatments than Pten-null cells in tumorigenicity and stemness. Taken together, these studies suggest that MAOA expression promotes PCa development by increasing cell proliferation and CSCs and highlights the potential use of MAOA inhibitors for the treatment of PCa.


Asunto(s)
Adenocarcinoma/patología , Monoaminooxidasa/deficiencia , Monoaminooxidasa/genética , Células Madre Neoplásicas/patología , Próstata/patología , Neoplasias de la Próstata/patología , Animales , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Epitelio/patología , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
3.
Mol Cancer Res ; 12(4): 607-21, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24464914

RESUMEN

UNLABELLED: Annexin A1 (AnxA1), a phospholipid-binding protein and regulator of glucocorticoid-induced inflammatory signaling, has implications in cancer. Here, a role for AnxA1 in prostate adenocarcinoma was determined using primary cultures and a tumor cell line (cE1), all derived from the conditional Pten deletion mouse model of prostate cancer. AnxA1 secretion by prostate-derived cancer-associated fibroblasts (CAF) was significantly higher than by normal prostate fibroblasts (NPF). Prostate tumor cells were sorted to enrich for epithelial subpopulations based on nonhematopoietic lineage, high SCA-1, and high or medium levels of CD49f. Compared with controls, AnxA1 enhanced stem cell-like properties in high- and medium-expression subpopulations of sorted cE1 and primary cells, in vitro, through formation of greater number of spheroids with increased complexity, and in vivo, through generation of more, larger, and histologically complex glandular structures, along with increased expression of p63, a basal/progenitor marker. The differentiated medium-expression subpopulations from cE1 and primary cells were most susceptible to gain stem cell-like properties as shown by increased spheroid and glandular formation. Further supporting this increased plasticity, AnxA1 was shown to regulate epithelial-to-mesenchymal transition in cE1 cells. These results suggest that CAF-secreted AnxA1 contributes to tumor stem cell dynamics via two separate but complementary pathways: induction of a dedifferentiation process leading to generation of stem-like cells from a subpopulation of cancer epithelial cells and stimulation of proliferation and differentiation of the cancer stem-like cells. IMPLICATIONS: AnxA1 participates in a paradigm in which malignant prostate epithelial cells that are not cancer stem cells are induced to gain cancer stem cell-like properties.


Asunto(s)
Anexina A1/metabolismo , Células Madre Neoplásicas/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...