Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8079, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582926

RESUMEN

With the growing resistance of pathogenic microbes to traditional drugs, biogenic silver nanoparticles (SNPs) have recently drawn attention as potent antimicrobial agents. In the present study, SNPs synthesized with the aid of orange (Citrus sinensis) peel were engineered by screening variables affecting their properties via Plackett-Burman design. Among the variables screened (temperature, pH, shaking speed, incubation time, peel extract concentration, AgNO3 concentration and extract/AgNO3 volume ratio), pH was the only variable with significant effect on SNPs synthesis. Therefore, SNPs properties could be enhanced to possess highly regular shape with zeta size of 11.44 nm and zeta potential of - 23.7 mV. SNPs purified, capped and stabilized by cloud point extraction technique were then checked for their antimicrobial activity against Bacillus cereus, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Candida albicans. The maximum antimicrobial activity of SNPs was recorded against E. coli, L. monocytogenes and C. albicans with clear zone diameter of 33.2, 31.8 and 31.7 mm, respectively. Based on minimum inhibition concentration and minimum bactericidal concentration of SNPs (300 mg/l) as well as their effect on respiratory chain dehydrogenases, cellular sugar leakage, protein leakage and lipid peroxidation of microbial cells, E. coli was the most affected. Scanning electron microscopy, protein banding and DNA fragmentation proved obvious ultrastructural and molecular alterations of E. coli treated with SNPs. Thus, biogenic SNPs with enhanced properties can be synthesized with the aid of Citrus peel; and such engineered nanoparticles can be used as potent antimicrobial drug against E. coli.


Asunto(s)
Antiinfecciosos , Citrus sinensis , Citrus , Nanopartículas del Metal , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Citrus/química , Escherichia coli/metabolismo , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Citrus sinensis/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología
2.
RSC Adv ; 13(42): 29252-29269, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37809023

RESUMEN

Devices for electrochemical energy storage with exceptional capacitance and rate performance, outstanding energy density, simple fabrication, long-term stability, and remarkable reversibility have always been in high demand. Herein, a high-performance binder-free electrode (3D NiCuS/rGO) was fabricated as a supercapacitor by a simple electrodeposition process on a Ni foam (NF) surface. The thickness of the deposited materials on the NF surface was adjusted by applying a low cycle number of cyclic voltammetry (5 cycles) which produced a thin layer and thus enabled the easier penetration of electrolytes to promote electron and charge transfer. The NiCuS was anchored by graphene layers producing nicely integrated materials leading to a higher electroconductivity and a larger surface area electrode. The as-fabricated electrode displayed a high specific capacitance (2211.029 F g-1 at 5 mV s-1). The NiCuS/rGO/NF//active carbon device can achieve a stable voltage window of 1.5 V with a highly specific capacitance of 84.3 F g-1 at a current density of 1 A g-1. At a power density of 749 W kg-1, a satisfactory energy density of 26.3 W h kg-1 was achieved, with outstanding coulombic efficiency of 100% and an admirable life span of 96.2% after 10 000 GCD cycles suggesting the significant potential of the as-prepared materials for practical supercapacitors.

3.
RSC Adv ; 13(44): 31077-31091, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37881767

RESUMEN

Seawater desalination powered by solar energy is the most environmentally and economical solution in responding to the global water and energy crisis. However, solar desalination has been negatively impacted by intermittent sun radiation that alternates between day and night. In this study, sugarcane bagasse (SCB) was recycled via the pyrolysis process to biochar as a cost-effective solar absorber. Besides, polyethylene glycol (PEG) as a phase change material was encapsulated in the abundant pore structure of biochar to store the thermal energy for 24 hours of continuous steam generation. The BDB/1.5 PEG evaporator exhibited an evaporation rate of 2.11 kg m-2 h-1 (98.1% efficiency) under 1 sun irradiation. Additionally, the BDB/1.5 PEG evaporator incorporated by the TEC1-12706 module for continuous steam and electricity generation with a power density of 320.41 mW m-2. Moreover, 10 continuous hours of evaporation were applied to the composite demonstrating outstanding stability. The composite exhibited high water purification efficiency through solar desalination due to the abundant functional groups on the biochar surface. Finally, the resulting low-cost and highly efficient PCM-based absorber can be used on a wide scale to produce fresh water and energy.

4.
RSC Adv ; 12(44): 28843-28852, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36320508

RESUMEN

Solar steam generation (SSG) is a potential approach for resolving the global water and energy crisis while causing the least amount of environmental damage. However, using adaptable photothermal absorbers with salt resistance through a simple, scalable, and cost-effective production approach is difficult. Herein, taking advantage of the ultra-fast water transportation in capillaries, and the large seawater storage capacity of wood, we develop a highly efficient natural evaporator. The wood wastes (sawdust) were carbonized at low temperatures to fabricate a green and low-cost carbonaceous porous material (CW). To enhance the salt resistance in high saline water, this evaporator was coated with polyaniline emeraldine salt (ES-PANI) which was synthesized through facile and cost-effective one-step oxidation of aniline. Furthermore, the composite was decorated with silver sulfide to increase the evaporation rate which reached up to 1.1 kg m-2 h-1 under 1 sun irradiation with 91.5% efficiency. Besides, the evaporator performs exceptionally well over 10 cycles due to the salt resistance capability of ES-PANI which generates a "Donnan exclusion" effect against cations in saline water. The Ag2S@PANI/CW evaporator may be a viable large-scale generator of drinking water due to its high efficiency for energy conversion, simple and low-cost fabrication approach, salt-resistance, and durability.

5.
Molecules ; 26(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925636

RESUMEN

The presence of inorganic pollutants such as Cadmium(II) and Chromium(VI) could destroy our environment and ecosystem. To overcome this problem, much attention was directed to microbial technology, whereas some microorganisms could resist the toxic effects and decrease pollutants concentration while the microbial viability is sustained. Therefore, we built up a complementary strategy to study the biofilm formation of isolated strains under the stress of heavy metals. As target resistive organisms, Rhizobium-MAP7 and Rhodotorula ALT72 were identified. However, Pontoea agglumerans strains were exploited as the susceptible organism to the heavy metal exposure. Among the methods of sensing and analysis, bioelectrochemical measurements showed the most effective tools to study the susceptibility and resistivity to the heavy metals. The tested Rhizobium strain showed higher ability of removal of heavy metals and more resistive to metals ions since its cell viability was not strongly inhibited by the toxic metal ions over various concentrations. On the other hand, electrochemically active biofilm exhibited higher bioelectrochemical signals in presence of heavy metals ions. So by using the two strains, especially Rhizobium-MAP7, the detection and removal of heavy metals Cr(VI) and Cd(II) is highly supported and recommended.


Asunto(s)
Cadmio/aislamiento & purificación , Cromo/aislamiento & purificación , Ecosistema , Contaminantes Ambientales/aislamiento & purificación , Biodegradación Ambiental , Cadmio/química , Cadmio/toxicidad , Cromo/química , Cromo/toxicidad , Contaminantes Ambientales/química , Contaminantes Ambientales/toxicidad , Intoxicación por Metales Pesados/prevención & control , Humanos , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Metales Pesados/toxicidad
6.
RSC Adv ; 10(26): 15586-15597, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35495473

RESUMEN

Herein we introduce an effective approach for incorporating sulfamic acid (SA) into HKUST-1. The synthesized materials have been characterized using XRD, XPS, BET, FT-IR, SEM, EDX and TEM. The X-ray diffraction pattern of SA@HKUST-1 is analogous to that of parent HKUST-1 in line shape and d-spacing, proving that chemical modification could be obtained without damage to structural solidity. The XPS spectra confirmed successful sulfonation, due to the single S 2p peak being attributable to SO3H groups at 168 eV. Catalytic efficiency was studied for 7-hydroxy-4-methyl coumarin and 3,4-dihydropyrimidinone synthesis and it was found to be highly dependent on the amount of SA loaded over HKUST-1. Moreover, the adsorptive removal activity of some common organic and inorganic pollutants from water has been studied. To fully understand the adsorption process, the effects of initial dye concentration, pH of solution, adsorbent dosage, contact time and temperature on the adsorption process were successfully studied. Under the optimum conditions 10 wt% SA@HKUST-1 was able to reach the maximum adsorption capacity for Pb2+ (298 mg g-1) and Malachite green (290 mg g-1). Hopefully, this will facilitate research on improving the prospective use of MOFs for future applications.

7.
World J Microbiol Biotechnol ; 35(6): 93, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31187335

RESUMEN

Siderophores are extra-cellular inducible compounds produced by aerobic microorganisms and plants to overcome iron insolubility via its chelation and then uptake inside the cell. This work aims to study the characteristics of siderophore that is produced by a rhizosphere-inhabiting fungus. This fungus has been morphologically and molecularly identified as Aspergillus niger with the ability to produce 87% siderophore units. The obtained siderophore in PDB medium gave a positive result with tetrazolium test and a characteristic spectrum with a maximum absorbance at 450 nm in FeCl3 test that did not shift in response to different pH degrees (5-9). This indicates that the obtained siderophore is a trihydroxymate in nature. After purification, the FTIR and NMR analyses showed that the obtained siderophore is considered to be ferrichrome. The purified siderophore has been further evaluated as a tool to extract uranium, thorium and rare earth elements (REEs) from Egyptian phosphorites obtained from Abu Tartur Mine area. The inductively coupled plasma atomic emission spectroscopy analysis showed that the highest removal efficiency percentage was for uranium (69.5%), followed by samarium (66.7%), thorium (55%), lanthanum (51%), and cerium (50.1%). This result confirmed the ability of hydroxymate siderophores to chelate the aforementioned precious elements, a result that paves the way for bioleaching to replace abiotic techniques in order to save the cost of such elements in an environmentally friendly way.


Asunto(s)
Aspergillus niger/aislamiento & purificación , Aspergillus niger/metabolismo , Sideróforos/aislamiento & purificación , Sideróforos/metabolismo , Microbiología del Suelo , Aspergillus niger/clasificación , Aspergillus niger/genética , Egipto , Ácidos Grasos/análisis , Ferricromo , Concentración de Iones de Hidrógeno , Hierro , Minerales , Fosfatos , Rizosfera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA