Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Med Imaging ; 23(1): 150, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814250

RESUMEN

Medical images such as CT and X-ray have been widely used for the detection of several chest infections and lung diseases. However, these images are susceptible to different types of noise, and it is hard to remove these noises due to their complex distribution. The presence of such noise significantly deteriorates the quality of the images and significantly affects the diagnosis performance. Hence, the design of an effective de-noising technique is highly essential to remove the noise from chest CT and X-ray images prior to further processing. Deep learning methods, mainly, CNN have shown tremendous progress on de-noising tasks. However, existing CNN based models estimate the noise from the final layers, which may not carry adequate details of the image. To tackle this issue, in this paper a deep multi-level semantic fusion network is proposed, called DMF-Net for the removal of noise from chest CT and X-ray images. The DMF-Net mainly comprises of a dilated convolutional feature extraction block, a cascaded feature learning block (CFLB) and a noise fusion block (NFB) followed by a prominent feature extraction block. The CFLB cascades the features from different levels (convolutional layers) which are later fed to NFB to attain correct noise prediction. Finally, the Prominent Feature Extraction Block(PFEB) produces the clean image. To validate the proposed de-noising technique, a separate and a mixed dataset containing high-resolution CT and X-ray images with specific and blind noise are used. Experimental results indicate the effectiveness of the DMF-Net compared to other state-of-the-art methods in the context of peak signal-to-noise ratio (PSNR) and structural similarity measurement (SSIM) while drastically cutting down on the processing power needed.


Asunto(s)
Semántica , Tomografía Computarizada por Rayos X , Humanos , Rayos X , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador
2.
J Healthc Eng ; 2023: 6370416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287541

RESUMEN

Skin is the outer cover of our body, which protects vital organs from harm. This important body part is often affected by a series of infections caused by fungus, bacteria, viruses, allergies, and dust. Millions of people suffer from skin diseases. It is one of the common causes of infection in sub-Saharan Africa. Skin disease can also be the cause of stigma and discrimination. Early and accurate diagnosis of skin disease can be vital for effective treatment. Laser and photonics-based technologies are used for the diagnosis of skin disease. These technologies are expensive and not affordable, especially for resource-limited countries like Ethiopia. Hence, image-based methods can be effective in reducing cost and time. There are previous studies on image-based diagnosis for skin disease. However, there are few scientific studies on tinea pedis and tinea corporis. In this study, the convolution neural network (CNN) has been used to classify fungal skin disease. The classification was carried out on the four most common fungal skin diseases: tinea pedis, tinea capitis, tinea corporis, and tinea unguium. The dataset consisted of a total of 407 fungal skin lesions collected from Dr. Gerbi Medium Clinic, Jimma, Ethiopia. Normalization of image size, conversion of RGB to grayscale, and balancing the intensity of the image have been carried out. Images were normalized to three sizes: 120 × 120, 150 × 150, and 224 × 224. Then, augmentation was applied. The developed model classified the four common fungal skin diseases with 93.3% accuracy. Comparisons were made with similar CNN architectures: MobileNetV2 and ResNet 50, and the proposed model was superior to both. This study may be an important addition to the very limited work on the detection of fungal skin disease. It can be used to build an automated image-based screening system for dermatology at an initial stage.


Asunto(s)
Dermatomicosis , Onicomicosis , Tiña , Humanos , Tiña del Pie/diagnóstico , Tiña del Pie/microbiología , Tiña del Pie/patología , Dermatomicosis/diagnóstico , Dermatomicosis/microbiología , Dermatomicosis/patología , Tiña/patología , Piel/diagnóstico por imagen , Piel/patología , Onicomicosis/diagnóstico , Onicomicosis/microbiología , Onicomicosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...