Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(40): 46655-46667, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37753951

RESUMEN

Membrane proteins are among the most difficult to study as they are embedded in the cellular membrane, a complex and fragile environment with limited experimental accessibility. To study membrane proteins outside of these environments, model systems are required that replicate the fundamental properties of the cellular membrane without its complexity. We show here a self-assembled lipid bilayer nanoarchitecture on a solid support that is stable for several days at room temperature and allows the measurement of insect olfactory receptors at the single-channel level. Using an odorant binding protein, we capture airborne ligands and transfer them to an olfactory receptor from Drosophila melanogaster (OR22a) complex embedded in the lipid membrane, reproducing the complete olfaction process in which a ligand is captured from air and transported across an aqueous reservoir by an odorant binding protein and finally triggers a ligand-gated ion channel embedded in a lipid bilayer, providing direct evidence for ligand capture and olfactory receptor triggering facilitated by odorant binding proteins. This model system presents a significantly more user-friendly and robust platform to exploit the extraordinary sensitivity of insect olfaction for biosensing. At the same time, the platform offers a new opportunity for label-free studies of the olfactory signaling pathways of insects, which still have many unanswered questions.

2.
Micromachines (Basel) ; 14(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838142

RESUMEN

In the past few years, object detection has attracted a lot of attention in the context of human-robot collaboration and Industry 5.0 due to enormous quality improvements in deep learning technologies. In many applications, object detection models have to be able to quickly adapt to a changing environment, i.e., to learn new objects. A crucial but challenging prerequisite for this is the automatic generation of new training data which currently still limits the broad application of object detection methods in industrial manufacturing. In this work, we discuss how to adapt state-of-the-art object detection methods for the task of automatic bounding box annotation in a use case where the background is homogeneous and the object's label is provided by a human. We compare an adapted version of Faster R-CNN and the Scaled-YOLOv4-p5 architecture and show that both can be trained to distinguish unknown objects from a complex but homogeneous background using only a small amount of training data. In contrast to most other state-of-the-art methods for bounding box labeling, our proposed method neither requires human verification, a predefined set of classes, nor a very large manually annotated dataset. Our method outperforms the state-of-the-art, transformer-based object discovery method LOST on our simple fruits dataset by large margins.

3.
Algorithms Mol Biol ; 16(1): 19, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404422

RESUMEN

BACKGROUND: Best match graphs (BMGs) are a class of colored digraphs that naturally appear in mathematical phylogenetics as a representation of the pairwise most closely related genes among multiple species. An arc connects a gene x with a gene y from another species (vertex color) Y whenever it is one of the phylogenetically closest relatives of x. BMGs can be approximated with the help of similarity measures between gene sequences, albeit not without errors. Empirical estimates thus will usually violate the theoretical properties of BMGs. The corresponding graph editing problem can be used to guide error correction for best match data. Since the arc set modification problems for BMGs are NP-complete, efficient heuristics are needed if BMGs are to be used for the practical analysis of biological sequence data. RESULTS: Since BMGs have a characterization in terms of consistency of a certain set of rooted triples (binary trees on three vertices) defined on the set of genes, we consider heuristics that operate on triple sets. As an alternative, we show that there is a close connection to a set partitioning problem that leads to a class of top-down recursive algorithms that are similar to Aho's supertree algorithm and give rise to BMG editing algorithms that are consistent in the sense that they leave BMGs invariant. Extensive benchmarking shows that community detection algorithms for the partitioning steps perform best for BMG editing. CONCLUSION: Noisy BMG data can be corrected with sufficient accuracy and efficiency to make BMGs an attractive alternative to classical phylogenetic methods.

4.
J Math Biol ; 82(6): 47, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33818665

RESUMEN

Two errors in the article Best Match Graphs (Geiß et al. in JMB 78: 2015-2057, 2019) are corrected. One concerns the tacit assumption that digraphs are sink-free, which has to be added as an additional precondition in Lemma 9, Lemma 11, Theorem 4. Correspondingly, Algorithm 2 requires that its input is sink-free. The second correction concerns an additional necessary condition in Theorem 9 required to characterize best match graphs. The amended results simplify the construction of least resolved trees for n-cBMGs, i.e., Algorithm 1. All other results remain unchanged and are correct as stated.

5.
J Math Biol ; 82(3): 20, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33606106

RESUMEN

Genome-scale orthology assignments are usually based on reciprocal best matches. In the absence of horizontal gene transfer (HGT), every pair of orthologs forms a reciprocal best match. Incorrect orthology assignments therefore are always false positives in the reciprocal best match graph. We consider duplication/loss scenarios and characterize unambiguous false-positive (u-fp) orthology assignments, that is, edges in the best match graphs (BMGs) that cannot correspond to orthologs for any gene tree that explains the BMG. Moreover, we provide a polynomial-time algorithm to identify all u-fp orthology assignments in a BMG. Simulations show that at least [Formula: see text] of all incorrect orthology assignments can be detected in this manner. All results rely only on the structure of the BMGs and not on any a priori knowledge about underlying gene or species trees.


Asunto(s)
Algoritmos , Modelos Biológicos , Filogenia , Evolución Molecular , Transferencia de Gen Horizontal , Genoma
6.
Algorithms Mol Biol ; 15: 5, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308731

RESUMEN

BACKGROUND: Many of the commonly used methods for orthology detection start from mutually most similar pairs of genes (reciprocal best hits) as an approximation for evolutionary most closely related pairs of genes (reciprocal best matches). This approximation of best matches by best hits becomes exact for ultrametric dissimilarities, i.e., under the Molecular Clock Hypothesis. It fails, however, whenever there are large lineage specific rate variations among paralogous genes. In practice, this introduces a high level of noise into the input data for best-hit-based orthology detection methods. RESULTS: If additive distances between genes are known, then evolutionary most closely related pairs can be identified by considering certain quartets of genes provided that in each quartet the outgroup relative to the remaining three genes is known. A priori knowledge of underlying species phylogeny greatly facilitates the identification of the required outgroup. Although the workflow remains a heuristic since the correct outgroup cannot be determined reliably in all cases, simulations with lineage specific biases and rate asymmetries show that nearly perfect results can be achieved. In a realistic setting, where distances data have to be estimated from sequence data and hence are noisy, it is still possible to obtain highly accurate sets of best matches. CONCLUSION: Improvements of tree-free orthology assessment methods can be expected from a combination of the accurate inference of best matches reported here and recent mathematical advances in the understanding of (reciprocal) best match graphs and orthology relations. AVAILABILITY: Accompanying software is available at https://github.com/david-schaller/AsymmeTree.

7.
J Math Biol ; 80(5): 1459-1495, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32002659

RESUMEN

A wide variety of problems in computational biology, most notably the assessment of orthology, are solved with the help of reciprocal best matches. Using an evolutionary definition of best matches that captures the intuition behind the concept we clarify rigorously the relationships between reciprocal best matches, orthology, and evolutionary events under the assumption of duplication/loss scenarios. We show that the orthology graph is a subgraph of the reciprocal best match graph (RBMG). We furthermore give conditions under which an RBMG that is a cograph identifies the correct orthlogy relation. Using computer simulations we find that most false positive orthology assignments can be identified as so-called good quartets-and thus corrected-in the absence of horizontal transfer. Horizontal transfer, however, may introduce also false-negative orthology assignments.


Asunto(s)
Evolución Molecular , Especiación Genética , Modelos Genéticos , Filogenia , Algoritmos , Biología Computacional , Gráficos por Computador , Simulación por Computador , Eliminación de Gen , Duplicación de Gen , Transferencia de Gen Horizontal , Conceptos Matemáticos
8.
J Math Biol ; 80(3): 865-953, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31691135

RESUMEN

Reciprocal best matches play an important role in numerous applications in computational biology, in particular as the basis of many widely used tools for orthology assessment. Nevertheless, very little is known about their mathematical structure. Here, we investigate the structure of reciprocal best match graphs (RBMGs). In order to abstract from the details of measuring distances, we define reciprocal best matches here as pairwise most closely related leaves in a gene tree, arguing that conceptually this is the notion that is pragmatically approximated by distance- or similarity-based heuristics. We start by showing that a graph G is an RBMG if and only if its quotient graph w.r.t. a certain thinness relation is an RBMG. Furthermore, it is necessary and sufficient that all connected components of G are RBMGs. The main result of this contribution is a complete characterization of RBMGs with 3 colors/species that can be checked in polynomial time. For 3 colors, there are three distinct classes of trees that are related to the structure of the phylogenetic trees explaining them. We derive an approach to recognize RBMGs with an arbitrary number of colors; it remains open however, whether a polynomial-time for RBMG recognition exists. In addition, we show that RBMGs that at the same time are cographs (co-RBMGs) can be recognized in polynomial time. Co-RBMGs are characterized in terms of hierarchically colored cographs, a particular class of vertex colored cographs that is introduced here. The (least resolved) trees that explain co-RBMGs can be constructed in polynomial time.


Asunto(s)
Anotación de Secuencia Molecular/métodos , Filogenia , Análisis de Secuencia de ADN/métodos , Biología Computacional
9.
J Math Biol ; 78(7): 2015-2057, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30968198

RESUMEN

Best match graphs arise naturally as the first processing intermediate in algorithms for orthology detection. Let T be a phylogenetic (gene) tree T and [Formula: see text] an assignment of leaves of T to species. The best match graph [Formula: see text] is a digraph that contains an arc from x to y if the genes x and y reside in different species and y is one of possibly many (evolutionary) closest relatives of x compared to all other genes contained in the species [Formula: see text]. Here, we characterize best match graphs and show that it can be decided in cubic time and quadratic space whether [Formula: see text] derived from a tree in this manner. If the answer is affirmative, there is a unique least resolved tree that explains [Formula: see text], which can also be constructed in cubic time.


Asunto(s)
Algoritmos , Evolución Biológica , Gráficos por Computador , Genes/genética , Modelos Genéticos , Humanos , Filogenia
10.
J Math Biol ; 77(5): 1459-1491, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29951855

RESUMEN

Two genes are xenologs in the sense of Fitch if they are separated by at least one horizontal gene transfer event. Horizonal gene transfer is asymmetric in the sense that the transferred copy is distinguished from the one that remains within the ancestral lineage. Hence xenology is more precisely thought of as a non-symmetric relation: y is xenologous to x if y has been horizontally transferred at least once since it diverged from the least common ancestor of x and y. We show that xenology relations are characterized by a small set of forbidden induced subgraphs on three vertices. Furthermore, each xenology relation can be derived from a unique least-resolved edge-labeled phylogenetic tree. We provide a linear-time algorithm for the recognition of xenology relations and for the construction of its least-resolved edge-labeled phylogenetic tree. The fact that being a xenology relation is a heritable graph property, finally has far-reaching consequences on approximation problems associated with xenology relations.


Asunto(s)
Transferencia de Gen Horizontal , Modelos Genéticos , Familia de Multigenes , Filogenia , Algoritmos , Simulación por Computador , Duplicación de Gen , Especiación Genética , Heurística , Conceptos Matemáticos
11.
Algorithms Mol Biol ; 13: 2, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29441122

RESUMEN

BACKGROUND: In the absence of horizontal gene transfer it is possible to reconstruct the history of gene families from empirically determined orthology relations, which are equivalent to event-labeled gene trees. Knowledge of the event labels considerably simplifies the problem of reconciling a gene tree T with a species trees S, relative to the reconciliation problem without prior knowledge of the event types. It is well-known that optimal reconciliations in the unlabeled case may violate time-consistency and thus are not biologically feasible. Here we investigate the mathematical structure of the event labeled reconciliation problem with horizontal transfer. RESULTS: We investigate the issue of time-consistency for the event-labeled version of the reconciliation problem, provide a convenient axiomatic framework, and derive a complete characterization of time-consistent reconciliations. This characterization depends on certain weak conditions on the event-labeled gene trees that reflect conditions under which evolutionary events are observable at least in principle. We give an [Formula: see text]-time algorithm to decide whether a time-consistent reconciliation map exists. It does not require the construction of explicit timing maps, but relies entirely on the comparably easy task of checking whether a small auxiliary graph is acyclic. The algorithms are implemented in C++ using the boost graph library and are freely available at https://github.com/Nojgaard/tc-recon. SIGNIFICANCE: The combinatorial characterization of time consistency and thus biologically feasible reconciliation is an important step towards the inference of gene family histories with horizontal transfer from orthology data, i.e., without presupposed gene and species trees. The fast algorithm to decide time consistency is useful in a broader context because it constitutes an attractive component for all tools that address tree reconciliation problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...