Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biol Chem ; 404(7): 691-702, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37276364

RESUMEN

Mycobacteria, such as the pathogen M. tuberculosis, utilize up to five paralogous type VII secretion systems to transport proteins across their cell envelope. Since these proteins associate in pairs that depend on each other for transport to a different extent, the secretion pathway to the bacterial surface remained challenging to address. Structural characterization of the inner-membrane embedded secretion machineries along with recent advances on the substrates' co-dependencies for transport allow for the first time more detailed and testable models for secretion.


Asunto(s)
Mycobacterium tuberculosis , Sistemas de Secreción Tipo VII , Sistemas de Secreción Tipo VII/química , Sistemas de Secreción Tipo VII/metabolismo , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/química , Membrana Celular/metabolismo , Sistemas de Secreción Bacterianos/metabolismo
2.
ACS Omega ; 6(43): 28903-28911, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34746582

RESUMEN

During DNA replication, primases synthesize oligonucleotide primers on single-stranded template DNA, which are then extended by DNA polymerases to synthesize a complementary DNA strand. Primase RepB' of plasmid RSF1010 initiates DNA replication on two 40 nucleotide-long inverted repeats, termed ssiA and ssiB, within the oriV of RSF1010. RepB' consists of a catalytic domain and a helix bundle domain, which are connected by long α-helix 6 and an unstructured linker. Previous work has demonstrated that RepB' requires both domains for the initiation of dsDNA synthesis in DNA replication assays. However, the precise functions of these two domains in primer synthesis have been unknown. Here, we report that both domains of RepB' are required to synthesize a 10-12 nucleotide-long DNA primer, whereas the isolated domains are inactive. Mutational analysis of the catalytic domain indicates that the solvent-exposed W50 plays a critical role in resolving hairpin structures formed by ssiA and ssiB. Three structurally conserved aspartates (D77, D78, and D134) of RepB' catalyze the nucleotidyl transfer reaction. Mutations on the helix bundle domain are identified that either reduce the primer length to a dinucleotide (R285A) or abolish the primer synthesis (D238A), indicating that the helix bundle domain is required to form and extend the initial dinucleotide synthesized by the catalytic domain.

3.
Nat Rev Microbiol ; 19(9): 567-584, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34040228

RESUMEN

Type VII secretion systems (T7SSs) have a key role in the secretion of effector proteins in non-pathogenic mycobacteria and pathogenic mycobacteria such as Mycobacterium tuberculosis, the main causative agent of tuberculosis. Tuberculosis-causing mycobacteria, still accounting for 1.4 million deaths annually, rely on paralogous T7SSs to survive in the host and efficiently evade its immune response. Although it is still unknown how effector proteins of T7SSs cross the outer membrane of the diderm mycobacterial cell envelope, recent advances in the structural characterization of these secretion systems have revealed the intricate network of interactions of conserved components in the plasma membrane. This structural information, added to recent advances in the molecular biology and regulation of mycobacterial T7SSs as well as progress in our understanding of their secreted effector proteins, is shedding light on the inner working of the T7SS machinery. In this Review, we highlight the implications of these studies and the derived transport models, which provide new scenarios for targeting the deathly human pathogen M. tuberculosis.


Asunto(s)
Mycobacterium/metabolismo , Sistemas de Secreción Tipo VII/fisiología , Transporte Biológico , Membrana Celular , Conformación Proteica
4.
J Bacteriol ; 202(7)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31964696

RESUMEN

Staphylococcus aureus employs the type VIIb secretion system (T7SSb) to secrete effector proteins that either have antibacterial activities or promote bacterial persistence in mouse infection models. Here, we present the crystal structure of the ATPase domain D3 of the EssC coupling protein from S. aureus USA300_FPR3757, an integral component of the T7SSb complex, resolved at a 1.7-Å resolution. EssC-D3 shares structural homology with FtsK/SpoIII-like ATPase domains of T7SSa and T7SSb and exhibits a conserved pocket on the surface with differential amino acid composition. In T7SSa, substrate EsxB interacts with the D3 domain through this pocket. Here, we identify amino acids in this pocket that are essential for effector protein secretion in the T7SSb. Our results reveal that the adjacent ATPase domain D2 is a substrate binding site on EssC and that substrates bound to D2 require domain D3 for further transport. Point mutations in the Walker B motif of domain D3 have diametric effects on secretion activity, either abolishing or boosting it, pointing to a critical role of domain D3 in the substrate transport. Finally, we identify ATPase domain D3 as a virulence determinant of S. aureus USA300_FPR3757 using an invertebrate in vivo infection model.IMPORTANCE The emergence of antibiotic-resistant bacteria poses a rising problem in antibiotic treatment (S. Boyle-Vavra and R. S. Daum, Lab Invest 87:3-9, 2007, https://doi.org/10.1038/labinvest.3700501). We have used the multidrug-resistant S. aureus USA300_FPR3757 as a model organism to study the T7SSb. Effector proteins of this system have been associated with abscess formation and bacterial persistence in mouse models (M. L. Burts, A. C. DeDent, and D. M. Missiakas, Mol Microbiol 69:736-746, 2008, https://doi.org/10.1111/j.1365-2958.2008.06324.x; M. L. Burts, W. A. Williams, K. DeBord, and D. M. Missiakas, Proc Natl Acad Sci U S A 102:1169-1174, 2005, https://doi.org/10.1073/pnas.0405620102). We determined the structure of the essential ATPase domain D3 of the T7SSb at atomic resolution and validated a surface-exposed pocket as a potential drug target to block secretion. Furthermore, our study provides new mechanistic insights into the T7SSb substrate transport.


Asunto(s)
Proteínas Bacterianas/metabolismo , Unión Proteica , Sistemas de Secreción Tipo VII/metabolismo , Simulación de Dinámica Molecular , Complejos Multiproteicos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de Virulencia/metabolismo
5.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 12): 725-730, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31797813

RESUMEN

The membrane protein EsaA is a conserved component of the type VIIb secretion system. Limited proteolysis of purified EsaA from Staphylococcus aureus USA300 identified a stable 48 kDa fragment, which was mapped by fingerprint mass spectrometry to an uncharacterized extracellular segment of EsaA. Analysis by circular dichroism spectroscopy showed that this fragment folds into a single stable domain made of mostly α-helices with a melting point of 34.5°C. Size-exclusion chromatography combined with multi-angle light scattering indicated the formation of a dimer of the purified extracellular domain. Octahedral crystals were grown in 0.2 M ammonium citrate tribasic pH 7.0, 16% PEG 3350 using the hanging-drop vapor-diffusion method. Diffraction data were analyzed to 4.0 Šresolution, showing that the crystals belonged to the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = 197.5, b = 197.5, c = 368.3 Å, α = ß = γ = 90°.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Staphylococcus aureus/metabolismo , Sistemas de Secreción Tipo VII/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Conformación Proteica , Homología de Secuencia , Sistemas de Secreción Tipo VII/química , Sistemas de Secreción Tipo VII/genética , Sistemas de Secreción Tipo VII/aislamiento & purificación
6.
Nature ; 576(7786): 321-325, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597161

RESUMEN

Host infection by pathogenic mycobacteria, such as Mycobacterium tuberculosis, is facilitated by virulence factors that are secreted by type VII secretion systems1. A molecular understanding of the type VII secretion mechanism has been hampered owing to a lack of three-dimensional structures of the fully assembled secretion apparatus. Here we report the cryo-electron microscopy structure of a membrane-embedded core complex of the ESX-3/type VII secretion system from Mycobacterium smegmatis. The core of the ESX-3 secretion machine consists of four protein components-EccB3, EccC3, EccD3 and EccE3, in a 1:1:2:1 stoichiometry-which form two identical protomers. The EccC3 coupling protein comprises a flexible array of four ATPase domains, which are linked to the membrane through a stalk domain. The domain of unknown function (DUF) adjacent to the stalk is identified as an ATPase domain that is essential for secretion. EccB3 is predominantly periplasmatic, but a small segment crosses the membrane and contacts the stalk domain. This suggests that conformational changes in the stalk domain-triggered by substrate binding at the distal end of EccC3 and subsequent ATP hydrolysis in the DUF-could be coupled to substrate secretion to the periplasm. Our results reveal that the architecture of type VII secretion systems differs markedly from that of other known secretion machines2, and provide a structural understanding of these systems that will be useful for the design of antimicrobial strategies that target bacterial virulence.


Asunto(s)
Microscopía por Crioelectrón , Mycobacterium smegmatis/química , Sistemas de Secreción Tipo VII/química , Sistemas de Secreción Tipo VII/ultraestructura , Actinobacteria/química , Actinobacteria/enzimología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/aislamiento & purificación , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/ultraestructura , Dominios Proteicos , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Relación Estructura-Actividad , Thermomonospora , Sistemas de Secreción Tipo VII/aislamiento & purificación
7.
Cell ; 171(6): 1354-1367.e20, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29103614

RESUMEN

A number of bacterial cell processes are confined functional membrane microdomains (FMMs), structurally and functionally similar to lipid rafts of eukaryotic cells. How bacteria organize these intricate platforms and what their biological significance is remain important questions. Using the pathogen methicillin-resistant Staphylococcus aureus (MRSA), we show here that membrane-carotenoid interaction with the scaffold protein flotillin leads to FMM formation, which can be visualized using super-resolution array tomography. These membrane platforms accumulate multimeric protein complexes, for which flotillin facilitates efficient oligomerization. One of these proteins is PBP2a, responsible for penicillin resistance in MRSA. Flotillin mutants are defective in PBP2a oligomerization. Perturbation of FMM assembly using available drugs interferes with PBP2a oligomerization and disables MRSA penicillin resistance in vitro and in vivo, resulting in MRSA infections that are susceptible to penicillin treatment. Our study demonstrates that bacteria possess sophisticated cell organization programs and defines alternative therapies to fight multidrug-resistant pathogens using conventional antibiotics.


Asunto(s)
Microdominios de Membrana/metabolismo , Staphylococcus aureus Resistente a Meticilina/fisiología , Infecciones Estafilocócicas/microbiología , Animales , Proteínas Bacterianas/metabolismo , Carotenoides/metabolismo , Membrana Celular/metabolismo , Femenino , Microdominios de Membrana/química , Proteínas de la Membrana/metabolismo , Staphylococcus aureus Resistente a Meticilina/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Proteínas de Unión a las Penicilinas/metabolismo , Xantófilas/metabolismo
8.
PLoS Pathog ; 13(11): e1006728, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29166667

RESUMEN

Scaffold proteins are ubiquitous chaperones that promote efficient interactions between partners of multi-enzymatic protein complexes; although they are well studied in eukaryotes, their role in prokaryotic systems is poorly understood. Bacterial membranes have functional membrane microdomains (FMM), a structure homologous to eukaryotic lipid rafts. Similar to their eukaryotic counterparts, bacterial FMM harbor a scaffold protein termed flotillin that is thought to promote interactions between proteins spatially confined to the FMM. Here we used biochemical approaches to define the scaffold activity of the flotillin homolog FloA of the human pathogen Staphylococcus aureus, using assembly of interacting protein partners of the type VII secretion system (T7SS) as a case study. Staphylococcus aureus cells that lacked FloA showed reduced T7SS function, and thus reduced secretion of T7SS-related effectors, probably due to the supporting scaffold activity of flotillin. We found that the presence of flotillin mediates intermolecular interactions of T7SS proteins. We tested several small molecules that interfere with flotillin scaffold activity, which perturbed T7SS activity in vitro and in vivo. Our results suggest that flotillin assists in the assembly of S. aureus membrane components that participate in infection and influences the infective potential of this pathogen.


Asunto(s)
Proteínas de la Membrana/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus , Sistemas de Secreción Tipo VII/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Microdominios de Membrana/metabolismo
10.
Protein Sci ; 25(3): 627-37, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26645482

RESUMEN

The adaptor protein Grb2 is a key element of mitogenetically important signaling pathways. With its SH2 domain it binds to upstream targets while its SH3 domains bind to downstream proteins thereby relaying signals from the cell membranes to the nucleus. The Grb2 SH2 domain binds to its targets by recognizing a phosphotyrosine (pY) in a pYxNx peptide motif, requiring an Asn at the +2 position C-terminal to the pY with the residue either side of this Asn being hydrophobic. Structural analysis of the Grb2 SH2 domain in complex with its cognate peptide has shown that the peptide adopts a unique ß-turn conformation, unlike the extended conformation that phosphopeptides adopt when bound to other SH2 domains. TrpEF1 (W121) is believed to force the peptide into this unusual conformation conferring this unique specificity to the Grb2 SH2 domain. Using X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and isothermal titration calorimetry (ITC), we describe here a series of experiments that explore the role of TrpEF1 in determining the specificity of the Grb2 SH2 domain. Our results demonstrate that the ligand does not adopt a pre-organized structure before binding to the SH2 domain, rather it is the interaction between the two that imposes the hairpin loop to the peptide. Furthermore, we find that the peptide adopts a similar structure when bound to both the wild-type Grb2 SH2 domain and a TrpEF1Gly mutant. This suggests that TrpEF1 is not the determining factor for the conformation of the phosphopeptide.


Asunto(s)
Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Fosfopéptidos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Proteína Adaptadora GRB2/genética , Humanos , Simulación del Acoplamiento Molecular , Mutación , Fosfopéptidos/química , Mutación Puntual , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Especificidad por Sustrato , Dominios Homologos src
11.
Biochim Biophys Acta ; 1850(3): 554-64, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25063559

RESUMEN

BACKGROUND: Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW: The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS: The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE: The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.

12.
Elife ; 32014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25271373

RESUMEN

PapC ushers are outer-membrane proteins enabling assembly and secretion of P pili in uropathogenic E. coli. Their translocation domain is a large ß-barrel occluded by a plug domain, which is displaced to allow the translocation of pilus subunits across the membrane. Previous studies suggested that this gating mechanism is controlled by a ß-hairpin and an α-helix. To investigate the role of these elements in allosteric signal communication, we developed a method combining evolutionary and molecular dynamics studies of the native translocation domain and mutants lacking the ß-hairpin and/or the α-helix. Analysis of a hybrid residue interaction network suggests distinct regions (residue 'communities') within the translocation domain (especially around ß12-ß14) linking these elements, thereby modulating PapC gating. Antibiotic sensitivity and electrophysiology experiments on a set of alanine-substitution mutants confirmed functional roles for four of these communities. This study illuminates the gating mechanism of PapC ushers and its importance in maintaining outer-membrane permeability.


Asunto(s)
Proteínas de Escherichia coli/química , Fimbrias Bacterianas/química , Porinas/química , Subunidades de Proteína/química , Escherichia coli Uropatógena/química , Alanina/química , Alanina/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Antibacterianos/farmacología , Permeabilidad de la Membrana Celular , Eritromicina/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Expresión Génica , Potenciales de la Membrana , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación , Porinas/genética , Porinas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Transducción de Señal , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/metabolismo , Vancomicina/farmacología
13.
Biochim Biophys Acta ; 1840(9): 2783-93, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24797039

RESUMEN

BACKGROUND: Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW: The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS: The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE: The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.


Asunto(s)
Adhesión Bacteriana/fisiología , Infecciones por Escherichia coli/metabolismo , Fimbrias Bacterianas/metabolismo , Infecciones Urinarias/metabolismo , Escherichia coli Uropatógena/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Femenino , Fimbrias Bacterianas/genética , Humanos , Masculino , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/patogenicidad
14.
Biochim Biophys Acta ; 1843(8): 1559-67, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24140205

RESUMEN

Secretion systems are specialized in transport of proteins, DNA or nutrients across the cell envelope of bacteria and enable them to communicate with their environment. The chaperone-usher (CU) pathway is used for assembly and secretion of a large family of long adhesive protein polymers, termed pili, and is widespread among Gram-negative pathogens [1]. Moreover, recent evidence has indicated that CU secretion systems are also involved in sporulation [2,3]. In this review we focus on the structural biology of the paradigmatic type 1 and P pili CU systems encoded by uropathogenic Escherichia coli (UPEC), where recent progress has provided unprecedented insights into pilus assembly and secretion mechanism. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Asunto(s)
Membrana Celular/metabolismo , Escherichia coli/metabolismo , Transporte de Proteínas , Infecciones Urinarias/microbiología , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Membrana Celular/química , Membrana Celular/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Infecciones Urinarias/genética , Infecciones Urinarias/metabolismo
15.
Nature ; 496(7444): 243-6, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23579681

RESUMEN

Type 1 pili, produced by uropathogenic Escherichia coli, are multisubunit fibres crucial in recognition of and adhesion to host tissues. During pilus biogenesis, subunits are recruited to an outer membrane assembly platform, the FimD usher, which catalyses their polymerization and mediates pilus secretion. The recent determination of the crystal structure of an initiation complex provided insight into the initiation step of pilus biogenesis resulting in pore activation, but very little is known about the elongation steps that follow. Here, to address this question, we determine the structure of an elongation complex in which the tip complex assembly composed of FimC, FimF, FimG and FimH passes through FimD. This structure demonstrates the conformational changes required to prevent backsliding of the nascent pilus through the FimD pore and also reveals unexpected properties of the usher pore. We show that the circular binding interface between the pore lumen and the folded substrate participates in transport by defining a low-energy pathway along which the nascent pilus polymer is guided during secretion.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Pliegue de Proteína , Cristalografía por Rayos X , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Modelos Moleculares , Conformación Proteica , Estabilidad Proteica , Transporte de Proteínas , Termodinámica
16.
Nature ; 474(7349): 49-53, 2011 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-21637253

RESUMEN

Type 1 pili are the archetypal representative of a widespread class of adhesive multisubunit fibres in Gram-negative bacteria. During pilus assembly, subunits dock as chaperone-bound complexes to an usher, which catalyses their polymerization and mediates pilus translocation across the outer membrane. Here we report the crystal structure of the full-length FimD usher bound to the FimC-FimH chaperone-adhesin complex and that of the unbound form of the FimD translocation domain. The FimD-FimC-FimH structure shows FimH inserted inside the FimD 24-stranded ß-barrel translocation channel. FimC-FimH is held in place through interactions with the two carboxy-terminal periplasmic domains of FimD, a binding mode confirmed in solution by electron paramagnetic resonance spectroscopy. To accommodate FimH, the usher plug domain is displaced from the barrel lumen to the periplasm, concomitant with a marked conformational change in the ß-barrel. The amino-terminal domain of FimD is observed in an ideal position to catalyse incorporation of a newly recruited chaperone-subunit complex. The FimD-FimC-FimH structure provides unique insights into the pilus subunit incorporation cycle, and captures the first view of a protein transporter in the act of secreting its cognate substrate.


Asunto(s)
Adhesinas de Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas Fimbrias/química , Modelos Moleculares , Adhesinas de Escherichia coli/metabolismo , Cristalización , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína
17.
Adv Exp Med Biol ; 715: 159-74, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21557063

RESUMEN

Among bacteria, the chaperone-usher (CU) pathway is a widespread conserved assembly and translocation system for adhesive protein fibres, called pili or fimbriae. Pili are large linear polymers that protrude from the outer bacterial surface and consist of several subunits. Pili contain adhesin proteins at the tip that are used by pathogenic bacteria to mediate attachment to host cells and initiate infections. Well studied examples of CU pili are P and type 1 pili of uropathogenic Escherichia coli (UPEC), which are responsible for kidney and bladder infections, respectively. Upon secretion into the periplasm, pilus subunits are stabilized by periplasmic chaperones and the resulting chaperone:subunit complexes are guided to the usher located in the outer membrane. The usher catalyzes the ordered assembly of pilus subunits while releasing the chaperones and translocating the growing pilus stepwise to the outer surface. Here we review the structural biology of the chaperone-usher pathway that has helped to understand the mechanisms by which biogenesis of an important class of bacterial organelles occurs.


Asunto(s)
Proteínas Fimbrias/química , Adhesión Bacteriana/fisiología , Cristalografía , Fimbrias Bacterianas/química , Fimbrias Bacterianas/ultraestructura , Humanos , Microscopía Electrónica , Modelos Moleculares , Estructura Terciaria de Proteína , Subunidades de Proteína , Receptores Inmunológicos/fisiología , Escherichia coli Uropatógena/química , Escherichia coli Uropatógena/patogenicidad , Escherichia coli Uropatógena/fisiología
18.
Proc Natl Acad Sci U S A ; 106(19): 7810-5, 2009 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-19416864

RESUMEN

For the initiation of DNA replication, dsDNA is unwound by helicases. Primases then recognize specific sequences on the template DNA strands and synthesize complementary oligonucleotide primers that are elongated by DNA polymerases in leading- and lagging-strand mode. The bacterial plasmid RSF1010 provides a model for the initiation of DNA replication, because it encodes the smallest known primase RepB' (35.9 kDa), features only 1 single-stranded primase initiation site on each strand (ssiA and ssiB, each 40 nt long with 5'- and 3'-terminal 6 and 13 single-stranded nucleotides, respectively, and nucleotides 7-27 forming a hairpin), and is replicated exclusively in leading strand mode. We present the crystal structure of full-length dumbbell-shaped RepB' consisting of an N-terminal catalytic domain separated by a long alpha-helix and tether from the C-terminal helix-bundle domain and the structure of the catalytic domain in a specific complex with the 6 5'-terminal single-stranded nucleotides and the C7-G27 base pair of ssiA, its single-stranded 3'-terminus being deleted. The catalytic domains of RepB' and the archaeal/eukaryotic family of Pri-type primases share a common fold with conserved catalytic amino acids, but RepB' lacks the zinc-binding motif typical of the Pri-type primases. According to complementation studies the catalytic domain shows primase activity only in the presence of the helix-bundle domain. Primases that are highly homologous to RepB' are encoded by broad-host-range IncQ and IncQ-like plasmids that share primase initiation sites ssiA and ssiB and high sequence identity with RSF1010.


Asunto(s)
ADN Helicasas/química , Plásmidos/metabolismo , Secuencias de Aminoácidos , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X/métodos , ADN Helicasas/metabolismo , ADN Primasa/química , Cartilla de ADN/química , Replicación del ADN , Modelos Biológicos , Conformación Molecular , Datos de Secuencia Molecular , Mutagénesis , Relación Estructura-Actividad
19.
Biophys J ; 89(4): 2513-21, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16040762

RESUMEN

Penetratin is a short, basic cell-penetrating peptide able to induce cellular uptake of a vast variety of large, hydrophilic cargos. We have reassessed the highly controversial issue of direct permeation of the strongly cationic peptide across negatively charged lipid membranes. Confocal laser scanning microscopy on rhodamine-labeled giant vesicles incubated with carboxyfluorescein-labeled penetratin yielded no evidence of transbilayer movement, in contradiction to previously reported results. Confocal fluorescence spectroscopy on black lipid membranes confirmed this finding, which was also not affected by application of a transmembrane electric potential difference. A novel dialysis assay based on tryptophan absorbance and fluorescence spectroscopy demonstrated that the permeability of small and large unilamellar vesicles to penetratin is <10(-13) m/s. Taken together, the results show that penetratin is not capable of overcoming model membrane systems irrespective of the bilayer curvature or the presence of a transmembrane voltage. Thus, direct translocation across the hydrophobic core of the plasma membrane cannot account for the efficient uptake of penetratin into live cells, which is in accord with recent in vitro studies underlining the importance of endocytosis in the internalization process of cationic cell-penetrating peptides.


Asunto(s)
Proteínas Portadoras/química , Membrana Dobles de Lípidos/química , Liposomas/química , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Fosfolípidos/química , Transporte de Proteínas , Péptidos de Penetración Celular , Diálisis/métodos , Difusión , Potenciales de la Membrana , Movimiento (Física) , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA