Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Foods ; 11(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35741955

RESUMEN

This study investigated the continuous and pulsed backflush cleaning of woven fabrics that act as filter media in the food and beverage industry. Especially in breweries, they are commonly used in mash filters to separate solid spent grains from liquid wort. After filtration, the removal of such cereal residues via self-discharge is necessary. However, this filter cake discharge is typically incomplete, and various spots remain contaminated. In addition to the reduced filter performance of subsequent batches, cross-contamination risk increases significantly. A reproducible contamination method focusing on the use case of a mash filter was developed for this study. Additionally, a residue analysis based on microscopical image processing helped to assess cleaning efficiency. The experimental part compared two backflushing procedures for mash filters and demonstrated fluid dynamical, procedural, and economic differences in cleaning. Specifically, pulsed jets show higher efficiency in reaching cleanliness faster, with fewer cleaning agents and less time. According to the experimental results, the fluid flow conditions depended highly on cloth geometry and mesh sizes. Larger mesh sizes significantly favored the cloth's cleanability as a larger backflush volume can reach contamination. With these results, cloth cleaning can be improved, enabling the realization of demand-oriented cleaning concepts.

2.
Anal Bioanal Chem ; 412(9): 2165-2175, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31286180

RESUMEN

Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network's information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback-Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris-batch process.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/instrumentación , Reactores Biológicos , Técnicas Biosensibles/instrumentación , Saccharomycetales/metabolismo , Inteligencia Artificial , Diseño de Equipo , Modelos Biológicos , Saccharomycetales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...