Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 139(1): 179-90, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22115757

RESUMEN

The spinal cord contains a diverse array of physiologically distinct interneuron cell types that subserve specialized roles in somatosensory perception and motor control. The mechanisms that generate these specialized interneuronal cell types from multipotential spinal progenitors are not known. In this study, we describe a temporally regulated transcriptional program that controls the differentiation of Renshaw cells (RCs), an anatomically and functionally discrete spinal interneuron subtype. We show that the selective activation of the Onecut transcription factors Oc1 and Oc2 during the first wave of V1 interneuron neurogenesis is a key step in the RC differentiation program. The development of RCs is additionally dependent on the forkhead transcription factor Foxd3, which is more broadly expressed in postmitotic V1 interneurons. Our demonstration that RCs are born, and activate Oc1 and Oc2 expression, in a narrow temporal window leads us to posit that neuronal diversity in the developing spinal cord is established by the composite actions of early spatial and temporal determinants.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Factor Nuclear 6 del Hepatocito/metabolismo , Proteínas de Homeodominio/metabolismo , Interneuronas/citología , Médula Espinal/citología , Médula Espinal/embriología , Factores de Transcripción/metabolismo , Animales , Bromodesoxiuridina , Cruzamientos Genéticos , Electrofisiología , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones , Factores de Tiempo
2.
J Comp Neurol ; 493(2): 177-92, 2005 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-16255029

RESUMEN

Developmental studies identified four classes (V0, V1, V2, V3) of embryonic interneurons in the ventral spinal cord. Very little is known, however, about their adult phenotypes. Therefore, we characterized the location, neurotransmitter phenotype, calcium-buffering protein expression, and axon distributions of V1-derived neurons in the adult mouse spinal cord. In the mature (P20 and older) spinal cord, most V1-derived neurons are located in lateral LVII and in LIX, few in medial LVII, and none in LVIII. Approximately 40% express calbindin and/or parvalbumin, while few express calretinin. Of seven groups of ventral interneurons identified according to calcium-buffering protein expression, two groups (1 and 4) correspond with V1-derived neurons. Group 1 are Renshaw cells and intensely express calbindin and coexpress parvalbumin and calretinin. They represent 9% of the V1 population. Group 4 express only parvalbumin and represent 27% of V1-derived neurons. V1-derived Group 4 neurons receive contacts from primary sensory afferents and are therefore proprioceptive interneurons. The most ventral neurons in this group receive convergent calbindin-IR Renshaw cell inputs. This subgroup resembles Ia inhibitory interneurons (IaINs) and represents 13% of V1-derived neurons. Adult V1-interneuron axons target LIX and LVII and some enter the deep dorsal horn. V1 axons do not cross the midline. V1-derived axonal varicosities were mostly (>80%) glycinergic and a third were GABAergic. None were glutamatergic or cholinergic. In summary, V1 interneurons develop into ipsilaterally projecting, inhibitory interneurons that include Renshaw cells, Ia inhibitory interneurons, and other unidentified proprioceptive interneurons.


Asunto(s)
Células del Asta Anterior/citología , Diferenciación Celular/fisiología , Interneuronas/citología , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Animales , Células del Asta Anterior/metabolismo , Calbindina 2 , Calbindinas , Recuento de Células , Movimiento Celular , Interneuronas/clasificación , Interneuronas/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/citología , Parvalbúminas/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Médula Espinal/metabolismo
3.
J Neurosci ; 25(2): 417-29, 2005 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-15647485

RESUMEN

Renshaw cells receive a high density of inhibitory synapses characterized by large postsynaptic gephyrin clusters and mixed glycinergic/GABAergic inhibitory currents with large peak amplitudes and long decays. These properties appear adapted to increase inhibitory efficacy over Renshaw cells and mature postnatally by mechanisms that are unknown. We tested the hypothesis that heterosynaptic influences from excitatory motor axon inputs modulate the development of inhibitory synapses on Renshaw cells. Thus, tetanus (TeNT) and botulinum neurotoxin A (BoNT-A) were injected intramuscularly at postnatal day 5 (P5) to, respectively, elevate or reduce motor axon firing activity for approximately 2 weeks. After TeNT injections, the average gephyrin cluster areas on Renshaw cells increased by 18.4% at P15 and 28.4% at P20 and decreased after BoNT-A injections by 17.7% at P15 and 19.9% at P20. The average size differences resulted from changes in the proportions of small and large gephyrin clusters. Whole-cell recordings in P9-P15 Renshaw cells after P5 TeNT injections showed increases in the peak amplitude of glycinergic miniature postsynaptic currents (mPSCs) and the fast component of mixed (glycinergic/GABAergic) mPSCs compared with controls (60.9% and 78.9%, respectively). GABAergic mPSCs increased in peak amplitude to a smaller extent (45.8%). However, because of the comparatively longer decays of synaptic GABAergic currents, total current transfer changes after TeNT were similar for synaptic glycine and GABA(A) receptors (56 vs 48.9% increases, respectively). We concluded that motor axon excitatory synaptic activity modulates the development of inhibitory synapse properties on Renshaw cells, influencing recruitment of postsynaptic gephyrin and glycine receptors and, to lesser extent, GABA(A) receptors.


Asunto(s)
Proteínas Portadoras/química , Interneuronas/fisiología , Proteínas de la Membrana/química , Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/química , Inhibición Neural/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Axones/efectos de los fármacos , Axones/fisiología , Toxinas Botulínicas Tipo A/farmacología , Proteínas Portadoras/efectos de los fármacos , Electrofisiología , Femenino , Glicina/fisiología , Interneuronas/química , Masculino , Proteínas de la Membrana/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Complejos Multiproteicos/efectos de los fármacos , Proteínas del Tejido Nervioso/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Vías Nerviosas/fisiología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Ratas , Ratas Wistar , Médula Espinal/citología , Sinapsis/efectos de los fármacos , Toxina Tetánica/farmacología , Ácido gamma-Aminobutírico/fisiología
4.
J Neurosci ; 24(5): 1255-64, 2004 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-14762144

RESUMEN

Many of the interneuron cell types present in the adult spinal cord contribute to the circuits that control locomotion and posture. Little is known, however, about the embryonic origin of these cell types or the molecular mechanisms that control their differentiation. Here we provide evidence that V1 interneurons (INs), an embryonic class of interneurons that transiently express the En1 transcription factor, differentiate as local circuit inhibitory interneurons and form synapses with motor neurons. Furthermore, we show that a subset of V1 INs differentiates as Renshaw cells, the interneuronal cell type that mediates recurrent inhibition of motor neurons. We analyze the role that two V1 IN-related transcription factor genes play in Renshaw cell development. Pax6 (paired box gene 6) is necessary for an early step in Renshaw cell development, whereas Engrailed 1 (En1), which is genetically downstream of Pax6, regulates the formation of inhibitory synapses between Renshaw cells and motor neurons. Together, these results show that Pax6 and En1 have essential roles in establishing the recurrent inhibitory circuit between motor neurons and Renshaw cells.


Asunto(s)
Proteínas de Homeodominio/fisiología , Interneuronas/fisiología , Animales , Calbindinas , Proteínas Portadoras/biosíntesis , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteínas del Ojo , Marcación de Gen , Genes Reporteros , Proteínas de Homeodominio/genética , Técnicas In Vitro , Interneuronas/clasificación , Interneuronas/citología , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Mutantes , Ratones Transgénicos , Neuronas Motoras/fisiología , Inhibición Neural/fisiología , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box , Proteínas Represoras , Proteína G de Unión al Calcio S100/biosíntesis , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/metabolismo , Sinapsis/fisiología , Ácido gamma-Aminobutírico/metabolismo
5.
J Comp Neurol ; 444(3): 275-89, 2002 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-11840480

RESUMEN

Inhibitory synapses with large and gephyrin-rich postsynaptic receptor areas are likely indicative of higher synaptic strength. We investigated the presynaptic inhibitory neurotransmitter content (GABA, glycine, or both) and the presence and subunit composition of GABA(A) and glycine postsynaptic receptors in one example of gephyrin-rich synapses to determine neurochemical characteristics that could also contribute to enhance synaptic strength. Hence, we analyzed subunit receptor expression in gephyrin patches located on Renshaw cells, a type of spinal interneuron that receives powerful excitatory and inhibitory inputs and displays many large gephyrin patches on its surface. GABA(A) and glycine receptors were almost always colocalized inside Renshaw cell gephyrin clusters. According to the subunit-immunoreactivities detected, the composition of GABA(A) receptors was inferred to be either alpha(3)beta((2or3))gamma(2), alpha(5)beta((2or3))gamma(2), alpha(3)alpha(5)beta((2or3))gamma(2) or a combination of these. The types of neurotransmitters contained inside boutons presynaptic to Renshaw cell gephyrin patches were also investigated. The majority (60-75%) of terminals presynaptic to Renshaw cell gephyrin patches contained immunocytochemical markers for GABA as well as glycine, but a proportion contained markers only for glycine. Significantly, 40% of GABA(A) receptor clusters were opposed to presynaptic boutons that contained only glycinergic markers. We postulate that GABA and glycine corelease, and the presence of alpha3-containing GABA(A) receptors can enhance the postsynaptic current and contribute to strengthen inhibitory input on Renshaw cells. In addition, a certain degree of imprecision in the localization of postsynaptic GABA(A) receptors in regard to GABA release sites onto adult Renshaw cells was also found.


Asunto(s)
Interneuronas/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Médula Espinal/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Proteínas Portadoras/metabolismo , Comunicación Celular , Femenino , Glutamato Descarboxilasa/metabolismo , Glicina/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática , Interneuronas/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Inhibición Neural/fisiología , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Neurotransmisores/metabolismo , Médula Espinal/citología , Médula Espinal/fisiología , Sinapsis/metabolismo , Distribución Tisular , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...