Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Pediatr ; 220: 73-79.e3, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32089332

RESUMEN

OBJECTIVE: To assess differences in regional brain temperatures during whole-body hypothermia and test the hypothesis that brain temperature profile is nonhomogenous in infants with hypoxic-ischemic encephalopathy. STUDY DESIGN: Infants with hypoxic-ischemic encephalopathy were enrolled prospectively in this observational study. Magnetic resonance (MR) spectra of basal ganglia, thalamus, cortical gray matter, and white matter (WM) were acquired during therapeutic hypothermia. Regional brain tissue temperatures were calculated from the chemical shift difference between water signal and metabolites in the MR spectra after performing calibration measurements. Overall difference in regional temperature was analyzed by mixed-effects model; temperature among different patterns and severity of injury on MR imaging also was analyzed. Correlation between temperature and depth of brain structure was analyzed using repeated-measures correlation. RESULTS: In total, 53 infants were enrolled (31 girls, mean gestational age: 38.6 ± 2 weeks; mean birth weight: 3243 ± 613 g). MR spectroscopy was acquired at mean age of 2.2 ± 0.6 days. A total of 201 MR spectra were included in the analysis. The thalamus, the deepest structure (36.4 ± 2.3 mm from skull surface), was lowest in temperature (33.2 ± 0.8°C, compared with basal ganglia: 33.5 ± 0.9°C; gray matter: 33.6 ± 0.7°C; WM: 33.8 ± 0.9°C, all P < .001). Temperatures in more superficial gray matter and WM regions (depth: 21.9 ± 2.4 and 21.5 ± 2.2 mm) were greater than the rectal temperatures (33.4 ± 0.4°C, P < .03). There was a negative correlation between temperature and depth of brain structure (rrm = -0.36, P < .001). CONCLUSIONS: Whole-body hypothermia was effective in cooling deep brain structures, whereas superficial structures were warmer, with temperatures significantly greater than rectal temperatures.


Asunto(s)
Temperatura Corporal/fisiología , Encéfalo/diagnóstico por imagen , Hipotermia Inducida , Hipoxia-Isquemia Encefálica/terapia , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Encéfalo/fisiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Estudios Prospectivos , Recto/fisiología , Termometría
2.
PLoS One ; 14(1): e0211073, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30695021

RESUMEN

Through forward genetic screening for mutations affecting visual system development, we identified prominent coloboma and cell-autonomous retinal neuron differentiation, lamination and retinal axon projection defects in eisspalte (ele) mutant zebrafish. Additional axonal deficits were present, most notably at midline axon commissures. Genetic mapping and cloning of the ele mutation showed that the affected gene is slbp, which encodes a conserved RNA stem-loop binding protein involved in replication dependent histone mRNA metabolism. Cells throughout the central nervous system remained in the cell cycle in ele mutant embryos at stages when, and locations where, post-mitotic cells have differentiated in wild-type siblings. Indeed, RNAseq analysis showed down-regulation of many genes associated with neuronal differentiation. This was coincident with changes in the levels and spatial localisation of expression of various genes implicated, for instance, in axon guidance, that likely underlie specific ele phenotypes. These results suggest that many of the cell and tissue specific phenotypes in ele mutant embryos are secondary to altered expression of modules of developmental regulatory genes that characterise, or promote transitions in, cell state and require the correct function of Slbp-dependent histone and chromatin regulatory genes.


Asunto(s)
Animales Modificados Genéticamente , Orientación del Axón/genética , Diferenciación Celular , Proliferación Celular , Coloboma , Enfermedades de la Retina , Proteínas de Pez Cebra/deficiencia , Pez Cebra , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Coloboma/embriología , Coloboma/genética , Coloboma/patología , Histonas/genética , Histonas/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Enfermedades de la Retina/embriología , Enfermedades de la Retina/genética , Enfermedades de la Retina/patología , Pez Cebra/embriología , Pez Cebra/genética
3.
PLoS One ; 13(11): e0207747, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30458023

RESUMEN

In zebrafish, the gene choline acetyltransferase a (chata) encodes one of the two ChAT orthologs responsible for the synthesis of acetylcholine. Acetylcholine (ACh) is essential for neuromuscular transmission and its impaired synthesis by ChAT can lead to neuromuscular junction disorders such as congenital myasthenic syndromes in humans. We have identified a novel mutation in the chata gene of zebrafish, chatatk64, in a collection of uncharacterised ENU-induced mutants. This mutant carries a missense mutation in the codon of a highly conserved serine changing it to an arginine (S102R). This serine is conserved among ChATs from zebrafish, rat, mice and chicken to humans. It resides within the catalytic domain and in the vicinity of the active site of the enzyme. However, it has not been reported so far to be required for enzymatic activity. Modelling of the S102R variant change in the ChAT protein crystal structure suggests that the change affects protein structure and has a direct impact on the catalytic domain of the protein which abolishes embryo motility almost completely.


Asunto(s)
Dominio Catalítico , Colina O-Acetiltransferasa/química , Colina O-Acetiltransferasa/genética , Embrión no Mamífero/fisiología , Movimiento , Serina , Pez Cebra/embriología , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Colina O-Acetiltransferasa/metabolismo , Estabilidad de Enzimas , Humanos , Mutación Missense , Estructura Secundaria de Proteína , Pez Cebra/genética
4.
Zebrafish ; 14(6): 547-551, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28968196

RESUMEN

The increasing importance of zebrafish as a biomedical model organism is reflected by the steadily growing number of publications and laboratories working with this species. Regulatory recommendations for euthanasia as issued in Directive 2010/63/EU are, however, based on experience with fish species used for food production and do not take the small size and specific physiology of zebrafish into account. Consequently, the currently recommended methods of euthanasia in the Directive 2010/63/EU are either not applicable or may interfere with research goals. An international workshop was held in Karlsruhe, Germany, March 9, 2017, to discuss and propose alternative methods for euthanasia of zebrafish. The aim was to identify methods that adequately address the physiology of zebrafish and its use as a biomedical research model, follow the principles of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation and consider animal welfare during anesthesia and euthanasia. The results of the workshop are summarized here in the form of a white paper.


Asunto(s)
Bienestar del Animal , Eutanasia Animal , Pez Cebra/fisiología , Anestesia/veterinaria , Animales , Ciencia de los Animales de Laboratorio/educación
5.
Elife ; 62017 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-28826496

RESUMEN

Altered Ca2+ handling is often present in diseased hearts undergoing structural remodeling and functional deterioration. However, whether Ca2+ directly regulates sarcomere structure has remained elusive. Using a zebrafish ncx1 mutant, we explored the impacts of impaired Ca2+ homeostasis on myofibril integrity. We found that the E3 ubiquitin ligase murf1 is upregulated in ncx1-deficient hearts. Intriguingly, knocking down murf1 activity or inhibiting proteasome activity preserved myofibril integrity, revealing a MuRF1-mediated proteasome degradation mechanism that is activated in response to abnormal Ca2+ homeostasis. Furthermore, we detected an accumulation of the murf1 regulator FoxO in the nuclei of ncx1-deficient cardiomyocytes. Overexpression of FoxO in wild type cardiomyocytes induced murf1 expression and caused myofibril disarray, whereas inhibiting Calcineurin activity attenuated FoxO-mediated murf1 expression and protected sarcomeres from degradation in ncx1-deficient hearts. Together, our findings reveal a novel mechanism by which Ca2+ overload disrupts myofibril integrity by activating a Calcineurin-FoxO-MuRF1-proteosome signaling pathway.


Asunto(s)
Calcineurina/genética , Calcio/metabolismo , Proteína Forkhead Box O1/genética , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Calcineurina/metabolismo , Señalización del Calcio , Embrión no Mamífero , Proteína Forkhead Box O1/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Miocardio/ultraestructura , Miocitos Cardíacos/ultraestructura , Miofibrillas/ultraestructura , Complejo de la Endopetidasa Proteasomal/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteolisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
7.
Zebrafish ; 13 Suppl 1: S19-23, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27351617

RESUMEN

We have established a European Zebrafish Resource Center (EZRC) at the KIT. This center not only maintains and distributes a large number of existing mutant and transgenic zebrafish lines but also gives zebrafish researchers access to screening services and technologies such as imaging and high-throughput sequencing, provided by the Institute of Toxicology and Genetics (ITG). The EZRC maintains and distributes the stock collection of the Nüsslein-Volhard laboratory, comprising over 2000 publicly released mutations, as frozen sperm samples. Within the framework of the ZF-HEALTH EU project, the EZRC distributes over 10,000 knockout mutations from the Sanger Institute (United Kingdom), as well as over 100 mutant and transgenic lines from other sources. In this article, we detail the measures we have taken to ensure the health of our fish, including hygiene, quarantine, and veterinary inspections.


Asunto(s)
Crianza de Animales Domésticos/métodos , Animales Modificados Genéticamente , Animales de Laboratorio , Acuicultura/métodos , Pez Cebra , Animales , Europa (Continente) , Modelos Animales
8.
Biol Open ; 5(6): 736-44, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27215328

RESUMEN

Polyamines are small poly-cations essential for all cellular life. The main polyamines present in metazoans are putrescine, spermidine and spermine. Their exact functions are still largely unclear; however, they are involved in a wide variety of processes affecting cell growth, proliferation, apoptosis and aging. Here we identify idefix, a mutation in the zebrafish gene encoding the enzyme spermidine synthase, leading to a severe reduction in spermidine levels as shown by capillary electrophoresis-mass spectrometry. We show that spermidine, but not spermine, is essential for early development, organogenesis and colour pattern formation. Whereas in other vertebrates spermidine deficiency leads to very early embryonic lethality, maternally provided spermidine synthase in zebrafish is sufficient to rescue the early developmental defects. This allows us to uncouple them from events occurring later during colour patterning. Factors involved in the cellular interactions essential for colour patterning, likely targets for spermidine, are the gap junction components Cx41.8, Cx39.4, and Kir7.1, an inwardly rectifying potassium channel, all known to be regulated by polyamines. Thus, zebrafish provide a vertebrate model to study the in vivo effects of polyamines.

9.
Pigment Cell Melanoma Res ; 26(2): 205-17, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23205854

RESUMEN

We present here the positional cloning of the Danio rerio albino mutant and show that the affected gene encodes Slc45a2. The human orthologous gene has previously been shown to be involved in human skin color variation, and mutations therein have been implicated in the disease OCA4. Through ultrastructural analysis of the melanosomes in albino alleles as well as the tyrosinase-deficient mutant sandy, we add new insights into the role of Slc45a2 in the production of melanin. To gain further understanding of the role of Slc45a2 and its possible interactions with other proteins involved in melanization, we further analyzed the role of the V-ATPase as a melanosomal acidifier. We show that it is possible to rescue the melanization potential of the albino melanosomes through genetic and chemical inhibition of V-ATPase, thereby increasing internal melanosome pH.


Asunto(s)
Evolución Biológica , Homeostasis , Melanosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pigmentación , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Clonación Molecular , Homeostasis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/patología , Melanóforos/efectos de los fármacos , Melanóforos/metabolismo , Melanosomas/efectos de los fármacos , Melanosomas/ultraestructura , Proteínas de Transporte de Membrana/química , Modelos Biológicos , Datos de Secuencia Molecular , Monofenol Monooxigenasa/metabolismo , Morfolinos/farmacología , Mutación/genética , Cresta Neural/efectos de los fármacos , Cresta Neural/metabolismo , Cresta Neural/patología , Especificidad de Órganos/efectos de los fármacos , Pigmentación/efectos de los fármacos , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Agudeza Visual/efectos de los fármacos , Proteínas de Pez Cebra/química
10.
Zebrafish ; 9(2): 90-3, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22537014

RESUMEN

Small fresh water fishes such as the zebrafish (Danio rerio) have become important model organisms for biomedical research. They currently represent the best vertebrate embryo models in which it is possible to derive quantitative data on gene expression, signaling events, and cell behavior in real time in the living animal. Relevant phenotypes in fish mutants are similar to those of other vertebrate models and human diseases. They can be analyzed in great detail and much faster than in mammals. In recent years, approximately 2500 genetically distinct fish lines have been generated by European research groups alone. Their potential, including their possible use by industry, is far from being exploited. To promote zebrafish research in Europe, EuFishBioMed was founded and won support by the EU COST programme ( http://www.cost.esf.org/ ). The main objective of EuFishBioMed is to establish a platform of knowledge exchange for research on small fish models with a strong focus on widening its biomedical applications and an integration of European research efforts and resources. EuFishBioMed currently lists more than 300 member laboratories in Europe, offers funding for short-term laboratory visits, organizes and co-sponsors meetings and workshops, and has successfully lobbied for the establishment of a European Zebrafish Resource Centre. To maintain this network in the future, beyond the funding period of the COST Action, we are currently establishing the European Society for Fish Models in Biology and Medicine.


Asunto(s)
Investigación Biomédica/economía , Peces , Servicios de Información , Animales , Investigación Biomédica/tendencias , Europa (Continente)
11.
Reprod Toxicol ; 33(2): 128-32, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21726626

RESUMEN

Worldwide, the zebrafish has become a popular model for biomedical research and (eco)toxicology. Particularly the use of embryos is receiving increasing attention, since they are considered as replacement method for animal experiments. Zebrafish embryos allow the analysis of multiple endpoints ranging from acute and developmental toxicity determination to complex functional genetic and physiological analysis. Particularly the more complex endpoints require the use of post-hatched eleutheroembryo stages. According to the new EU Directive 2010/63/EU on the protection of animals used for scientific purposes, the earliest life-stages of animals are not defined as protected and, therefore, do not fall into the regulatory frameworks dealing with animal experimentation. Independent feeding is considered as the stage from which free-living larvae are subject to regulations for animal experimentation. However, despite this seemingly clear definition, large variations exist in the interpretation of this criterion by national and regional authorities. Since some assays require the use of post-hatched stages up to 120 h post fertilization, the literature and available data are reviewed in order to evaluate if this stage could still be considered as non-protected according to the regulatory criterion of independent feeding. Based on our analysis and by including criteria such as yolk consumption, feeding and swimming behavior, we conclude that zebrafish larvae can indeed be regarded as independently feeding from 120 h after fertilization. Experiments with zebrafish should thus be subject to regulations for animal experiments from 120 h after fertilization onwards.


Asunto(s)
Bienestar del Animal/legislación & jurisprudencia , Estadios del Ciclo de Vida , Pez Cebra/fisiología , Alternativas al Uso de Animales , Animales , Embrión no Mamífero , Conducta Alimentaria , Control Social Formal
12.
PLoS One ; 6(2): e17080, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21390203

RESUMEN

Most organisms possess circadian clocks that are able to anticipate the day/night cycle and are reset or "entrained" by the ambient light. In the zebrafish, many organs and even cultured cell lines are directly light responsive, allowing for direct entrainment of the clock by light. Here, we have characterized light induced gene transcription in the zebrafish at several organizational levels. Larvae, heart organ cultures and cell cultures were exposed to 1- or 3-hour light pulses, and changes in gene expression were compared with controls kept in the dark. We identified 117 light regulated genes, with the majority being induced and some repressed by light. Cluster analysis groups the genes into five major classes that show regulation at all levels of organization or in different subset combinations. The regulated genes cover a variety of functions, and the analysis of gene ontology categories reveals an enrichment of genes involved in circadian rhythms, stress response and DNA repair, consistent with the exposure to visible wavelengths of light priming cells for UV-induced damage repair. Promoter analysis of the induced genes shows an enrichment of various short sequence motifs, including E- and D-box enhancers that have previously been implicated in light regulation of the zebrafish period2 gene. Heterologous reporter constructs with sequences matching these motifs reveal light regulation of D-box elements in both cells and larvae. Morpholino-mediated knock-down studies of two homologues of the D-box binding factor Tef indicate that these are differentially involved in the cell autonomous light induction in a gene-specific manner. These findings suggest that the mechanisms involved in period2 regulation might represent a more general pathway leading to light induced gene expression.


Asunto(s)
Adaptación Fisiológica/genética , Perfilación de la Expresión Génica , Luz , Pez Cebra/genética , Pez Cebra/fisiología , Adaptación Fisiológica/fisiología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Análisis por Conglomerados , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Análisis por Micromatrices , Fotoperiodo , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Análisis de Secuencia de ADN , Estudios de Validación como Asunto , Pez Cebra/metabolismo
13.
Development ; 138(9): 1783-94, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21447554

RESUMEN

The development of the different muscles within the somite is a complex process that involves the Hedgehog (Hh) signaling pathway. To specify the proper number of muscle cells and organize them spatially and temporally, the Hh signaling pathway needs to be precisely regulated at different levels, but only a few factors external to the pathway have been described. Here, we report for the first time the role of the STAR family RNA-binding protein Quaking A (QkA) in somite muscle development. We show in zebrafish that the loss of QkA function affects fast muscle fiber maturation as well as Hh-induced muscle derivative specification and/or morphogenesis. Mosaic analysis reveals that fast fiber maturation depends on the activity of QkA in the environment of fast fiber progenitors. We further show that Hh signaling requires QkA activity for muscle development. By an in silico approach, we screened the 3'UTRs of known Hh signaling component mRNAs for the Quaking response element and found the transcription factor Gli2a, a known regulator of muscle fate development. Using destabilized GFP as a reporter, we show that the gli2a mRNA 3'UTR is a functional QkA target. Consistent with this notion, the loss of QkA function rescued slow muscle fibers in yot mutant embryos, which express a dominant-negative Gli2a isoform. Thus, our results reveal a new mechanism to ensure muscle cell fate diversity by fine-tuning of the Hh signaling pathway via RNA-binding proteins.


Asunto(s)
Proteínas Hedgehog/fisiología , Desarrollo de Músculos/genética , Proteínas de Unión al ARN/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Mapeo Cromosómico , Embrión no Mamífero , Genes Recesivos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Morfogénesis/genética , Morfogénesis/fisiología , Desarrollo de Músculos/fisiología , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/fisiología , Mutación/fisiología , Proteínas de Unión al ARN/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
14.
Development ; 138(6): 1173-81, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21307094

RESUMEN

Arterial and venous endothelial cells exhibit distinct molecular characteristics at early developmental stages. These lineage-specific molecular programs are instructive to the development of distinct vascular architectures and physiological conditions of arteries and veins, but their roles in angiogenesis remain unexplored. Here, we show that the caudal vein plexus in zebrafish forms by endothelial cell sprouting, migration and anastomosis, providing a venous-specific angiogenesis model. Using this model, we have identified a novel compound, aplexone, which effectively suppresses venous, but not arterial, angiogenesis. Multiple lines of evidence indicate that aplexone differentially regulates arteriovenous angiogenesis by targeting the HMG-CoA reductase (HMGCR) pathway. Treatment with aplexone affects the transcription of enzymes in the HMGCR pathway and reduces cellular cholesterol levels. Injecting mevalonate, a metabolic product of HMGCR, reverses the inhibitory effect of aplexone on venous angiogenesis. In addition, aplexone treatment inhibits protein prenylation and blocking the activity of geranylgeranyl transferase induces a venous angiogenesis phenotype resembling that observed in aplexone-treated embryos. Furthermore, endothelial cells of venous origin have higher levels of proteins requiring geranylgeranylation than arterial endothelial cells and inhibiting the activity of Rac or Rho kinase effectively reduces the migration of venous, but not arterial, endothelial cells. Taken together, our findings indicate that angiogenesis is differentially regulated by the HMGCR pathway via an arteriovenous-dependent requirement for protein prenylation in zebrafish and human endothelial cells.


Asunto(s)
Arterias/efectos de los fármacos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Sulfonamidas/farmacología , Venas/efectos de los fármacos , Inhibidores de la Angiogénesis/farmacología , Animales , Animales Modificados Genéticamente , Arterias/fisiología , Células Cultivadas , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Embrión no Mamífero , Humanos , Terapia Molecular Dirigida , Neovascularización Fisiológica/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Especificidad por Sustrato/efectos de los fármacos , Venas/fisiología , Pez Cebra/embriología , Pez Cebra/metabolismo , Pez Cebra/fisiología
15.
Nat Genet ; 43(1): 79-84, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21131974

RESUMEN

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous autosomal recessive disorder characterized by recurrent infections of the respiratory tract associated with the abnormal function of motile cilia. Approximately half of individuals with PCD also have alterations in the left-right organization of their internal organ positioning, including situs inversus and situs ambiguous (Kartagener's syndrome). Here, we identify an uncharacterized coiled-coil domain containing a protein, CCDC40, essential for correct left-right patterning in mouse, zebrafish and human. In mouse and zebrafish, Ccdc40 is expressed in tissues that contain motile cilia, and mutations in Ccdc40 result in cilia with reduced ranges of motility. We further show that CCDC40 mutations in humans result in a variant of PCD characterized by misplacement of the central pair of microtubules and defective assembly of inner dynein arms and dynein regulatory complexes. CCDC40 localizes to motile cilia and the apical cytoplasm and is required for axonemal recruitment of CCDC39, disruption of which underlies a similar variant of PCD.


Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Proteínas/genética , Animales , Cilios/genética , Dineínas/genética , Humanos , Síndrome de Kartagener/genética , Ratones , Ratones Endogámicos , Mutación , Proteínas/fisiología , Situs Inversus/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
16.
Mech Dev ; 127(3-4): 203-19, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20117205

RESUMEN

The development of the eye lens is one of the classical paradigms of induction during embryonic development in vertebrates. But while there have been numerous studies aimed at discovering the genetic networks controlling early lens development, comparatively little is known about later stages, including the differentiation of secondary lens fibre cells. The analysis of mutant zebrafish isolated in forward genetic screens is an important way to investigate the roles of genes in embryogenesis. In this study we describe the zebrafish mutant bumper (bum), which shows a transient, tumour-like hyperproliferation of the lens epithelium as well as a progressively stronger defect in secondary fibre cell differentiation, which results in a significantly reduced lens size and ectopic location of the lens within the neural retina. Interestingly, the initial hyperproliferation of the lens epithelium in bum spontaneously regresses, suggesting this mutant as a valuable model to study the molecular control of tumour progression/suppression. Behavioural analyses demonstrate that, despite a morphologically normal retina, larval and adult bum(-/-) zebrafish are functionally blind. We further show that these fish have defects in their craniofacial skeleton with normal but delayed formation of the scleral ossicles within the eye, several reduced craniofacial bones resulting in an abnormal skull shape, and asymmetric ectopic bone formation within the mandible. Genetic mapping located the mutation in bum to a 4cM interval on chromosome 7 with the closest markers located at 0.2 and 0cM, respectively.


Asunto(s)
Ceguera/fisiopatología , Proteínas del Ojo/fisiología , Cristalino/citología , Mutación , Pez Cebra/embriología , Animales , Ceguera/patología , Células Epiteliales/citología , Proteínas del Ojo/genética
17.
Development ; 136(19): 3367-76, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19736328

RESUMEN

The skeletal muscle basement membrane fulfils several crucial functions during development and in the mature myotome and defects in its composition underlie certain forms of muscular dystrophy. A major component of this extracellular structure is the laminin polymer, which assembles into a resilient meshwork that protects the sarcolemma during contraction. Here we describe a zebrafish mutant, softy, which displays severe embryonic muscle degeneration as a result of initial basement membrane failure. The softy phenotype is caused by a mutation in the lamb2 gene, identifying laminin beta2 as an essential component of this basement membrane. Uniquely, softy homozygotes are able to recover and survive to adulthood despite the loss of myofibre adhesion. We identify the formation of ectopic, stable basement membrane attachments as a novel means by which detached fibres are able to maintain viability. This demonstration of a muscular dystrophy model possessing innate fibre viability following muscle detachment suggests basement membrane augmentation as a therapeutic strategy to inhibit myofibre loss.


Asunto(s)
Laminina/genética , Laminina/fisiología , Distrofia Muscular Animal/embriología , Distrofia Muscular Animal/genética , Mutación , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Membrana Basal/patología , Supervivencia Celular , Cartilla de ADN/genética , Ojo/embriología , Homocigoto , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/patología , Distrofia Muscular Animal/patología , Sarcolema/patología , Homología de Secuencia de Aminoácido
18.
Dev Biol ; 325(2): 329-40, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19014929

RESUMEN

Two hallmarks of vertebrate epimorphic regeneration are a significant increase in the proliferation of normally quiescent cells and a re-activation of genes that are active during embryonic development. It is unclear what the molecular determinants are that regulate these events and how they are coordinated. Zebrafish have the ability to regenerate several compound structures by regulating cell proliferation and gene transcription. We report that fam53b/simplet (smp) regulates both cell proliferation and the transcription of specific genes. In situ hybridization and quantitative RT-PCR experiments showed that amputation of zebrafish hearts and fins resulted in strong up-regulation of the smp gene. In regenerating adult fin, smp expression remained strong in the distal mesenchyme which later expanded to the basal layers of the distal epidermis and distal tip epithelium. Morpholino knockdown of smp reduced regenerative outgrowth by decreasing cell proliferation as measured by BrdU incorporation and histone H3 phosphorylation. In addition, smp knockdown increased the expression of msxb, msxc, and shh, as well as the later formation of ectopic bone. Taken together, these data indicate a requirement for smp in fin regeneration through control of cell proliferation, the regulation of specific genes and proper bone patterning.


Asunto(s)
Proliferación Celular , Extremidades/fisiología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Epidermis/crecimiento & desarrollo , Epidermis/fisiología , Extremidades/crecimiento & desarrollo , Regulación de la Expresión Génica , Mesodermo/crecimiento & desarrollo , Mesodermo/fisiología , Miocardio/metabolismo , Osteogénesis/fisiología , Regeneración , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética
19.
PLoS Genet ; 4(3): e1000026, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18369445

RESUMEN

A fundamental problem in developmental biology concerns how multipotent precursors choose specific fates. Neural crest cells (NCCs) are multipotent, yet the mechanisms driving specific fate choices remain incompletely understood. Sox10 is required for specification of neural cells and melanocytes from NCCs. Like sox10 mutants, zebrafish shady mutants lack iridophores; we have proposed that sox10 and shady are required for iridophore specification from NCCs. We show using diverse approaches that shady encodes zebrafish leukocyte tyrosine kinase (Ltk). Cell transplantation studies show that Ltk acts cell-autonomously within the iridophore lineage. Consistent with this, ltk is expressed in a subset of NCCs, before becoming restricted to the iridophore lineage. Marker analysis reveals a primary defect in iridophore specification in ltk mutants. We saw no evidence for a fate-shift of neural crest cells into other pigment cell fates and some NCCs were subsequently lost by apoptosis. These features are also characteristic of the neural crest cell phenotype in sox10 mutants, leading us to examine iridophores in sox10 mutants. As expected, sox10 mutants largely lacked iridophore markers at late stages. In addition, sox10 mutants unexpectedly showed more ltk-expressing cells than wild-type siblings. These cells remained in a premigratory position and expressed sox10 but not the earliest neural crest markers and may represent multipotent, but partially-restricted, progenitors. In summary, we have discovered a novel signalling pathway in NCC development and demonstrate fate specification of iridophores as the first identified role for Ltk.


Asunto(s)
Proteínas Tirosina Quinasas/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Alelos , Animales , Apoptosis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Mapeo Cromosómico , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Leucocitos/enzimología , Melanocitos/citología , Melanocitos/enzimología , Modelos Biológicos , Células Madre Multipotentes/citología , Células Madre Multipotentes/enzimología , Mutación , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/enzimología , Filogenia , Proteínas Tirosina Quinasas/genética , Factores de Transcripción SOXE , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Development ; 135(2): 387-99, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18077594

RESUMEN

The trafficking of intracellular vesicles is essential for a number of cellular processes and defects in this process have been implicated in a wide range of human diseases. We identify the zebrafish mutant lbk as a novel model for such disorders. lbk displays hypopigmentation of skin melanocytes and the retinal pigment epithelium (RPE), an absence of iridophore reflections, defects in internal organs (liver, intestine) as well as functional defects in vision and the innate immune system (macrophages). Positional cloning, an allele screen, rescue experiments and morpholino knock-down reveal a mutation in the zebrafish orthologue of the vam6/vps39 gene. Vam6p is part of the HOPS complex, which is essential for vesicle tethering and fusion. Affected cells in the lbk RPE, liver, intestine and macrophages display increased numbers and enlarged intracellular vesicles. Physiological and behavioural analyses reveal severe defects in visual ability in lbk mutants. The present study provides the first phenotypic description of a lack of vam6 gene function in a multicellular organism. lbk shares many of the characteristics of human diseases and suggests a novel disease gene for pathologies associated with defective vesicle transport, including the arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome, the Hermansky-Pudlak syndrome, the Chediak-Higashi syndrome and the Griscelli syndrome.


Asunto(s)
Endosomas/metabolismo , Endosomas/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Atrofia de Múltiples Sistemas/patología , Mutación/genética , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Transporte Biológico/efectos de los fármacos , Mapeo Cromosómico , Endosomas/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/ultraestructura , Hepatomegalia/patología , Humanos , Inmunidad Innata/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Larva/efectos de los fármacos , Larva/microbiología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/ultraestructura , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/farmacología , Fenotipo , Epitelio Pigmentado Ocular/efectos de los fármacos , Epitelio Pigmentado Ocular/patología , Epitelio Pigmentado Ocular/ultraestructura , Pigmentación/efectos de los fármacos , Vesículas Transportadoras/efectos de los fármacos , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Visión Ocular/efectos de los fármacos , Pez Cebra/embriología , Pez Cebra/inmunología , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA