Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 153(22): 224705, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317311

RESUMEN

Microemulsions, mixtures of oil, water, and surfactant, are thermodynamically stable. Unlike conventional emulsions, microemulsions form spontaneously, have a monodisperse droplet size that can be controlled by adjusting the surfactant concentration, and do not degrade with time. To make microemulsions, a judicious choice of surfactant molecules must be made, which significantly limits their potential use. Nanoparticle surfactants, on the other hand, are a promising alternative because the surface chemistry needed to make them bind to a liquid-liquid interface is both well flexible and understood. Here, we derive a thermodynamic model predicting the conditions in which nanoparticle surfactants drive spontaneous emulsification that agrees quantitatively with experiments using Noria nanoparticles. This new class of microemulsions inherits the mechanical, chemical, and optical properties of the nanoparticles used to form them, leading to novel applications.

2.
Proc Natl Acad Sci U S A ; 102(37): 13019-22, 2005 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-16135564

RESUMEN

Although it is widely accepted that the local structure of liquid water has tetrahedral arrangements of molecules ordered by hydrogen bonds, the mechanism by which water molecules switch hydrogen-bonded partners remains unclear. In this mechanism, the role of nonhydrogen-bonded configurations (NHBs) between adjacent molecules is of particular importance. A molecule may switch hydrogen-bonding partners either (i) through thermally activated breaking of a hydrogen bond that creates a dangling hydrogen bond before finding a new partner or (ii) by infrequent but rapid switching events in which the NHB is a transition state. Here, we report a combination of femtosecond 2D IR spectroscopy and molecular dynamics simulations to investigate the stability of NHB species in an isotopically dilute mixture of HOD in D2O. Measured 2D IR spectra reveal that hydrogen-bonded configurations and NHBs undergo qualitatively different relaxation dynamics, with NHBs returning to hydrogen-bonded frequencies on the time scale of water's fastest intermolecular motions. Simulations of an atomistic model for the OH vibrational spectroscopy of water yield qualitatively similar 2D IR spectra to those measured experimentally. Analysis of NHBs in simulations by quenching demonstrates that the vast majority of NHBs are in fact part of a hydrogen-bonded well of attraction and that virtually all molecules return to a hydrogen-bonding partner within 200 fs. The results from experiment and simulation demonstrate that NHBs are intrinsically unstable and that dangling hydrogen bonds are an insignificant species in liquid water.


Asunto(s)
Enlace de Hidrógeno , Agua/química , Deuterio , Cinética , Espectrofotometría Infrarroja
3.
Science ; 301(5640): 1698-702, 2003 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-14500975

RESUMEN

We investigated rearrangements of the hydrogen-bond network in water by measuring fluctuations in the OH-stretching frequency of HOD in liquid D2O with femtosecond infrared spectroscopy. Using simulations of an atomistic model of water, we relate these frequency fluctuations to intermolecular dynamics. The model reveals that OH frequency shifts arise from changes in the molecular electric field that acts on the proton. At short times, vibrational dephasing reflects an underdamped oscillation of the hydrogen bond with a period of 170 femtoseconds. At longer times, vibrational correlations decay on a 1.2-picosecond time scale because of collective structural reorganizations.

4.
Science ; 291(5511): 2121-4, 2001 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-11251111

RESUMEN

The dissociation of a water molecule in liquid water is the fundamental event in acid-base chemistry, determining the pH of water. Because of the short time scales and microscopic length scales involved, the dynamics of this autoionization have not been directly probed by experiment. Here, the autoionization mechanism is revealed by sampling and analyzing ab initio molecular dynamics trajectories. We identify the rare fluctuations in solvation energies that destabilize an oxygen-hydrogen bond. Through the transfer of protons along a hydrogen bond "wire," the nascent ions separate by three or more neighbors. If the hydrogen bond wire connecting the two ions is subsequently broken, a metastable charge-separated state is visited. The ions may then diffuse to large separations. If, however, the hydrogen bond wire remains unbroken, the ions recombine rapidly. Because of their concomitant large electric fields, the transient ionic species produced in this case may provide an experimentally detectable signal of the dynamics we report.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...