Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Biochem Biophys Res Commun ; 643: 1-7, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36584587

RESUMEN

The study aimed to explore the role of age-associated elevated cytosolic Ca2+ in changes of brain mitochondria energetic processes. Two groups of rats, young adults (4 months) and advanced old (24 months), were evaluated for potential alterations of mitochondrial parameters, the oxidative phosphorylation (OxPhos), membrane potential, calcium retention capacity, activity of glutamate/aspartate carrier (aralar), and ROS formation. We demonstrated that the brain mitochondria of older animals have a lower resistance to Ca2+ stress with resulting consequences. The suppressed complex I OxPhos and decreased membrane potential were accompanied by reduction of the Ca2+ threshold required for induction of mPTP. The Ca2+ binding sites of mitochondrial aralar mediated a lower activity of old brain mitochondria. The altered interaction between aralar and mPTP may underlie mitochondrial dysregulation leading to energetic depression during aging. At the advanced stages of aging, the declined metabolism is accompanied by the diminished oxidative background.


Asunto(s)
Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Ratas , Animales , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias/metabolismo , Encéfalo/metabolismo , Fosforilación Oxidativa , Calcio/metabolismo
3.
Exp Neurol ; 339: 113620, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33497646

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive, neurodegenerative disorder affecting upper and lower motor neurons. Approximately 10% of patients suffer from familial ALS (FALS) with mutations in different ubiquitously expressed genes including SOD1, C9ORF72, TARDBP, and FUS. There is compelling evidence for mitochondrial involvement in the pathogenic mechanisms of FALS and sporadic ALS (SALS), which is believed to be relevant for disease. Owing to the ubiquitous expression of relevant disease-associated genes, mitochondrial dysfunction is also detectable in peripheral patient tissue. We here report results of a detailed investigation of the functional impairment of mitochondrial oxidative phosphorylation (OXPHOS) in cultured skin fibroblasts from 23 SALS and 17 FALS patients, harboring pathogenic mutations in SOD1, C9ORF72, TARDBP and FUS. A considerable functional and structural mitochondrial impairment was detectable in fibroblasts from patients with SALS. Similarly, fibroblasts from patients with FALS, harboring pathogenic mutations in TARDBP, FUS and SOD1, showed mitochondrial defects, while fibroblasts from C9ORF72 associated FALS showed a very mild impairment detectable in mitochondrial ATP production rates only. While we could not detect alterations in the mtDNA copy number in the SALS or FALS fibroblast cultures, the impairment of OXPHOS in SALS fibroblasts and SOD1 or TARDBP FALS could be rescued by in vitro treatments with CoQ10 (5 µM for 3 weeks) or Trolox (300 µM for 5 days). This underlines the role of elevated oxidative stress as a potential cause for the observed functional effects on mitochondria, which might be relevant disease modifying factors.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Fibroblastos/metabolismo , Depuradores de Radicales Libres/farmacología , Mitocondrias/metabolismo , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/patología , Células Cultivadas , Femenino , Depuradores de Radicales Libres/uso terapéutico , Humanos , Masculino , Persona de Mediana Edad , Piel/efectos de los fármacos , Piel/metabolismo , Adulto Joven
5.
J Biol Chem ; 295(14): 4383-4397, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32094224

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) and cellular workload are tightly balanced by the key cellular regulator, calcium (Ca2+). Current models assume that cytosolic Ca2+ regulates workload and that mitochondrial Ca2+ uptake precedes activation of matrix dehydrogenases, thereby matching OXPHOS substrate supply to ATP demand. Surprisingly, knockout (KO) of the mitochondrial Ca2+ uniporter (MCU) in mice results in only minimal phenotypic changes and does not alter OXPHOS. This implies that adaptive activation of mitochondrial dehydrogenases by intramitochondrial Ca2+ cannot be the exclusive mechanism for OXPHOS control. We hypothesized that cytosolic Ca2+, but not mitochondrial matrix Ca2+, may adapt OXPHOS to workload by adjusting the rate of pyruvate supply from the cytosol to the mitochondria. Here, we studied the role of malate-aspartate shuttle (MAS)-dependent substrate supply in OXPHOS responses to changing Ca2+ concentrations in isolated brain and heart mitochondria, synaptosomes, fibroblasts, and thymocytes from WT and MCU KO mice and the isolated working rat heart. Our results indicate that extramitochondrial Ca2+ controls up to 85% of maximal pyruvate-driven OXPHOS rates, mediated by the activity of the complete MAS, and that intramitochondrial Ca2+ accounts for the remaining 15%. Of note, the complete MAS, as applied here, included besides its classical NADH oxidation reaction the generation of cytosolic pyruvate. Part of this largely neglected mechanism has previously been described as the "mitochondrial gas pedal." Its implementation into OXPHOS control models integrates seemingly contradictory results and warrants a critical reappraisal of metabolic control mechanisms in health and disease.


Asunto(s)
Calcio/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Animales , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Canales de Calcio/deficiencia , Canales de Calcio/genética , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Corazón/fisiología , Malatos/química , Malatos/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Fosforilación Oxidativa , Ratas , Especificidad por Sustrato , Sinaptosomas/metabolismo
6.
J Cell Mol Med ; 24(6): 3534-3548, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32040259

RESUMEN

Cardiac ischaemia-reperfusion (I/R) injury has been attributed to stress signals arising from an impaired mitochondrial electron transport chain (ETC), which include redox imbalance, metabolic stalling and excessive production of reactive oxygen species (ROS). The alternative oxidase (AOX) is a respiratory enzyme, absent in mammals, that accepts electrons from a reduced quinone pool to reduce oxygen to water, thereby restoring electron flux when impaired and, in the process, blunting ROS production. Hence, AOX represents a natural rescue mechanism from respiratory stress. This study aimed to determine how respiratory restoration through xenotopically expressed AOX affects the re-perfused post-ischaemic mouse heart. As expected, AOX supports ETC function and attenuates the ROS load in post-anoxic heart mitochondria. However, post-ischaemic cardiac remodelling over 3 and 9 weeks was not improved. AOX blunted transcript levels of factors known to be up-regulated upon I/R such as the atrial natriuretic peptide (Anp) whilst expression of pro-fibrotic and pro-apoptotic transcripts were increased. Ex vivo analysis revealed contractile failure at nine but not 3 weeks after ischaemia whilst label-free quantitative proteomics identified an increase in proteins promoting adverse extracellular matrix remodelling. Together, this indicates an essential role for ETC-derived signals during cardiac adaptive remodelling and identified ROS as a possible effector.


Asunto(s)
Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatología , Transducción de Señal , Remodelación Ventricular , Animales , Biocatálisis , Transporte de Electrón , Matriz Extracelular/metabolismo , Masculino , Ratones , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Contracción Miocárdica , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/genética , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Miocardio/ultraestructura , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Biochim Biophys Acta Bioenerg ; 1861(2): 148137, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825809

RESUMEN

Electron transfer from all respiratory chain dehydrogenases of the electron transport chain (ETC) converges at the level of the quinone (Q) pool. The Q redox state is thus a function of electron input (reduction) and output (oxidation) and closely reflects the mitochondrial respiratory state. Disruption of electron flux at the level of the cytochrome bc1 complex (cIII) or cytochrome c oxidase (cIV) shifts the Q redox poise to a more reduced state which is generally sensed as respiratory stress. To cope with respiratory stress, many species, but not insects and vertebrates, express alternative oxidase (AOX) which acts as an electron sink for reduced Q and by-passes cIII and cIV. Here, we used Ciona intestinalis AOX xenotopically expressed in mouse mitochondria to study how respiratory states impact the Q poise and how AOX may be used to restore respiration. Particularly interesting is our finding that electron input through succinate dehydrogenase (cII), but not NADH:ubiquinone oxidoreductase (cI), reduces the Q pool almost entirely (>90%) irrespective of the respiratory state. AOX enhances the forward electron transport (FET) from cII thereby decreasing reverse electron transport (RET) and ROS specifically when non-phosphorylating. AOX is not engaged with cI substrates, however, unless a respiratory inhibitor is added. This sheds new light on Q poise signaling, the biological role of cII which enigmatically is the only ETC complex absent from respiratory supercomplexes but yet participates in the tricarboxylic acid (TCA) cycle. Finally, we delineate potential risks and benefits arising from therapeutic AOX transfer.


Asunto(s)
Aldehído Oxidasa/metabolismo , Ciona intestinalis/genética , Expresión Génica , Mitocondrias Cardíacas/enzimología , Especies Reactivas de Oxígeno/metabolismo , Aldehído Oxidasa/genética , Animales , Ciclo del Ácido Cítrico/genética , Transporte de Electrón/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Ratones , Mitocondrias Cardíacas/genética , Consumo de Oxígeno/genética , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
8.
Front Mol Neurosci ; 11: 368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364204

RESUMEN

Alterations in mitochondrial morphology and function have been linked to neurodegenerative diseases, including Parkinson disease, Alzheimer disease and Huntington disease. Metabolic defects, resulting from dysfunctional mitochondria, have been reported in patients and respective animal models of all those diseases. Spinocerebellar Ataxia Type 3 (SCA3), another neurodegenerative disorder, also presents with metabolic defects and loss of body weight in early disease stages although the possible role of mitochondrial dysfunction in SCA3 pathology is still to be determined. Interestingly, the SCA3 disease protein ataxin-3, which is predominantly localized in cytoplasm and nucleus, has also been associated with mitochondria in both its mutant and wildtype form. This observation provides an interesting link to a potential mitochondrial involvement of mutant ataxin-3 in SCA3 pathogenesis. Furthermore, proteolytic cleavage of ataxin-3 has been shown to produce toxic fragments and even overexpression of artificially truncated forms of ataxin-3 resulted in mitochondria deficits. Therefore, we analyzed the repercussions of expressing a naturally occurring N-terminal cleavage fragment of ataxin-3 and the influence of an endogenous expression of the S256 cleavage fragment in vitro and in vivo. In our study, expression of a fragment derived from calpain cleavage induced mitochondrial fragmentation and cristae alterations leading to a significantly decreased capacity of mitochondrial respiration and contributing to an increased susceptibility to apoptosis. Furthermore, analyzing mitophagy revealed activation of autophagy in the early pathogenesis with reduced lysosomal activity. In conclusion, our findings indicate that cleavage of ataxin-3 by calpains results in fragments which interfere with mitochondrial function and mitochondrial degradation processes.

9.
Dis Model Mech ; 10(2): 163-171, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28067626

RESUMEN

Plants and many lower organisms, but not mammals, express alternative oxidases (AOXs) that branch the mitochondrial respiratory chain, transferring electrons directly from ubiquinol to oxygen without proton pumping. Thus, they maintain electron flow under conditions when the classical respiratory chain is impaired, limiting excess production of oxygen radicals and supporting redox and metabolic homeostasis. AOX from Ciona intestinalis has been used to study and mitigate mitochondrial impairments in mammalian cell lines, Drosophila disease models and, most recently, in the mouse, where multiple lentivector-AOX transgenes conferred substantial expression in specific tissues. Here, we describe a genetically tractable mouse model in which Ciona AOX has been targeted to the Rosa26 locus for ubiquitous expression. The AOXRosa26 mouse exhibited only subtle phenotypic effects on respiratory complex formation, oxygen consumption or the global metabolome, and showed an essentially normal physiology. AOX conferred robust resistance to inhibitors of the respiratory chain in organello; moreover, animals exposed to a systemically applied LD50 dose of cyanide did not succumb. The AOXRosa26 mouse is a useful tool to investigate respiratory control mechanisms and to decipher mitochondrial disease aetiology in vivo.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Fenómenos Fisiológicos , Proteínas de Plantas/metabolismo , Animales , Ciona intestinalis/enzimología , Cianuros/administración & dosificación , Cianuros/toxicidad , Ratones Transgénicos , Mitocondrias/metabolismo , Sustancias Protectoras/metabolismo , ARN no Traducido/genética
10.
Mol Neurobiol ; 53(7): 4728-44, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26319560

RESUMEN

Parkinson's disease and dementia with Lewy bodies are major challenges in research and clinical medicine world-wide and contribute to the most common neurodegenerative disorders. Previously, specific mitochondrial polymorphisms have been found to enhance clearance of amyloid-ß from the brain of APP-transgenic mice leading to beneficial clinical outcome. It has been discussed whether specific mitochondrial alterations contribute to disease progression or even prevent toxic peptide deposition, as seen in many neurodegenerative diseases. Here, we investigated α-synuclein-transgenic C57BL/6J mice with the A30P mutation, and a novel A30P C57BL/6J mouse model with three mitochondrial DNA polymorphisms in the ND3, COX3 and mtRNA(Arg) genes, as found in the inbred NOD/LtJ mouse strain. We were able to detect that the new model has increased mitochondrial complex II-respiration which occurs in parallel to neuronal loss and improved motor performance, although it exhibits higher amounts of high molecular weight species of α-synuclein. High molecular weight aggregates of different peptides are controversially discussed in the light of neurodegeneration. A favourable hypothesis states that high molecular weight species are protective and of minor importance for the pathogenesis of neurodegenerative disorders as compared to the extreme neurotoxic monomers and oligomers. Summarising, our results point to a potentially protective and beneficial effect of specific mitochondrial polymorphisms which cause improved mitochondrial complex II-respiration in α-synucleinopathies, an effect that could be exploited further for pharmaceutical interventions.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Respiración de la Célula/fisiología , Complejo II de Transporte de Electrones/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , alfa-Sinucleína/genética
11.
Biochim Biophys Acta ; 1852(3): 529-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25536029

RESUMEN

Dysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively examined how primary human skin fibroblasts adapt to chronic CI inhibition. CI inhibition triggered transient and sustained changes in metabolism, redox homeostasis and mitochondrial (ultra)structure but no cell senescence/death. CI-inhibited cells consumed no oxygen and displayed minor mitochondrial depolarization, reverse-mode action of complex V, a slower proliferation rate and futile mitochondrial biogenesis. Adaptation was neither prevented by antioxidants nor associated with increased PGC1-α/SIRT1/mTOR levels. Survival of CI-inhibited cells was strictly glucose-dependent and accompanied by increased AMPK-α phosphorylation, which occurred without changes in ATP or cytosolic calcium levels. Conversely, cells devoid of AMPK-α died upon CI inhibition. Chronic CI inhibition did not increase mitochondrial superoxide levels or cellular lipid peroxidation and was paralleled by a specific increase in SOD2/GR, whereas SOD1/CAT/Gpx1/Gpx2/Gpx5 levels remained unchanged. Upon hormone stimulation, fully adapted cells displayed aberrant cytosolic and ER calcium handling due to hampered ATP fueling of ER calcium pumps. It is concluded that CI dysfunction triggers an adaptive program that depends on extracellular glucose and AMPK-α. This response avoids cell death by suppressing energy crisis, oxidative stress induction and substantial mitochondrial depolarization.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fibroblastos/enzimología , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Estrés Oxidativo , Transducción de Señal , Proteínas Quinasas Activadas por AMP/genética , Animales , Calcio/metabolismo , Línea Celular Transformada , Supervivencia Celular/genética , Cloruros/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Fibroblastos/citología , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Neural Transm (Vienna) ; 121(10): 1245-57, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24627045

RESUMEN

Mitochondrial defects have been shown to be associated with the pathogenesis of Parkinson's disease (PD). Yet, experience in PD research linking mitochondrial dysfunction, e.g., deregulation of oxidative phosphorylation, with neuronal degeneration and behavioral changes is rather limited. Using the 6-hydroxydopamine (6-OHDA) rat model of PD, we have investigated the potential role of mitochondria in dopaminergic neuronal cell death in the substantia nigra pars compacta by high-resolution respirometry. Mitochondrial function was correlated with the time course of disease-related motor behavior asymmetry and dopaminergic neuronal cell loss, respectively. Unilateral 6-OHDA injections (>2.5 µg/2 µl) into the median forebrain bundle induced an impairment of oxidative phosphorylation due to a decrease in complex I activity. This was indicated by increased flux control coefficient. During the period of days 2-21, a progressive decrease in respiratory control ratio of up to -58 % was observed in the lesioned compared to the non-lesioned substantia nigra of the same animals. This decrease was associated with a marked uncoupling of oxidative phosphorylation. Mitochondrial dysfunction, motor behavior asymmetry, and dopaminergic neuronal cell loss correlated with dosage (1.25-5 µg/2 µl). We conclude that high-resolution respirometry may allow the detection of distinct mitochondrial dysfunction as a suitable surrogate marker for the preclinical assessment of potential neuroprotective strategies in the 6-OHDA model of PD.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Haz Prosencefálico Medial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Oxidopamina/toxicidad , Trastornos Parkinsonianos/fisiopatología , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/fisiología , Relación Dosis-Respuesta a Droga , Lateralidad Funcional , Inmunohistoquímica , Masculino , Haz Prosencefálico Medial/patología , Haz Prosencefálico Medial/fisiopatología , Mitocondrias/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Fosforilación Oxidativa/efectos de los fármacos , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/metabolismo
13.
IUBMB Life ; 65(3): 180-90, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23401251

RESUMEN

This review focuses on problems of the intracellular regulation of mitochondrial function in the brain via the (i) supply of mitochondria with ADP by means of ADP shuttles and channels and (ii) the Ca(2+) control of mitochondrial substrate supply. The permeability of the mitochondrial outer membrane for adenine nucleotides is low. Therefore rate dependent concentration gradients exist between the mitochondrial intermembrane space and the cytosol. The existence of dynamic ADP gradients is an important precondition for the functioning of ADP shuttles, for example CrP-shuttle. Cr at mM concentrations instead of ADP diffuses from the cytosol through the porin pores into the intermembrane space. The CrP-shuttle isoenzymes work in different directions which requires different metabolite concentrations mainly caused by dynamic ADP compartmentation. The ADP shuttle mechanisms alone cannot explain the load dependent changes in mitochondrial energization, and a complete model of mitochondrial regulation have to account the Ca(2+) -dependent substrate supply too. According to the old paradigmatic view, Ca(2+) (cyt) taken up by the mitochondrial Ca(2+) uniporter activates dehydrogenases within the matrix. However, recently it was found that Ca(2+) (cyt) at low nM concentrations exclusively activates the state 3 respiration via aralar, the mitochondrial glutamate/aspartate carrier. At higher Ca(2+) (cyt) (> 500 nM), brain mitochondria take up Ca(2+) for activation of substrate oxidation rates. Since brain mitochondrial pyruvate oxidation is only slightly influenced by Ca(2+) (cyt) , it was proposed that the cytosolic formation of pyruvate from its precursors is tightly controlled by the Ca(2+) dependent malate/aspartate shuttle. At low (50-100 nM) Ca(2+) (cyt) the pyruvate formation is suppressed, providing a substrate limitation control in neurons. This so called "gas pedal" mechanism explains why the energy metabolism of neurons in the nucleus suprachiasmaticus could be down-regulated at night but activated at day as a basis for the circadian changes in Ca(2+) (cyt) . It also could explain the energetic disadvantages caused by altered Ca(2+) (cyt) at mitochondrial diseases and neurodegeneration.


Asunto(s)
Calcio/metabolismo , Retroalimentación Fisiológica , Mitocondrias/metabolismo , Núcleo Supraquiasmático/metabolismo , Adenosina Difosfato/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiportadores/metabolismo , Ácido Aspártico/metabolismo , Ritmo Circadiano/fisiología , Citosol/metabolismo , Metabolismo Energético , Humanos , Membranas Intracelulares/metabolismo , Malatos/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Neuronas/metabolismo , Fosforilación Oxidativa , Ácido Pirúvico/metabolismo
14.
Mitochondrion ; 13(5): 399-409, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23268198

RESUMEN

Cardiac energy metabolism with emphasis on mitochondria was addressed in atrial tissue from patients with overload-induced atrial dilation. Structural remodeling of dilated (D) atria manifested as intracellular accumulation of fibrillar aggregates, lipofuscin, signs of myolysis and autophagy. Despite impaired complex I dependent respiration and increased diffusion restriction for ADP, no changes regarding adenylate and creatine kinase occurred. We observed 7-fold overexpression of HK2 gene in D atria with concomitant 2-fold greater activation of mitochondrial oxygen consumption by glucose, which might represent an adaption to increased energy requirements and impaired mitochondrial function by effectively joining glycolysis and oxidative phosphorylation.


Asunto(s)
Adenosina Difosfato/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Hexoquinasa/metabolismo , Mitocondrias/fisiología , Miocitos Cardíacos/fisiología , Fosforilación Oxidativa , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo
15.
Mitochondrion ; 13(5): 539-47, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22824458

RESUMEN

We have introduced a sensitive method for studying oxygen/glucose deprivation (OGD)-induced mitochondrial alterations in homogenates of organotypic hippocampal slice cultures (slices) by high-resolution respirometry. Using this approach, we tested the neuroprotective potential of the novel non-immunosuppressive cyclosporin (CsA) derivative Cs9 in comparison with CsA, the immunosuppressive CsA analog [D-Ser](8)CsA, and MK 801, a N-methyl-d-aspartate (NMDA) receptor antagonist. OGD/reperfusion reduced the glutamate/malate dependent (and protein-related) state 3 respiration to 30% of its value under control conditions. All of the above drugs reversed this effect, with an increase to >88% of the value for control slices not exposed to OGD. We conclude that Cs9, [D-Ser](8)CsA, and MK 801, despite their different modes of action, protect mitochondria from OGD-induced damage.


Asunto(s)
Respiración de la Célula , Ciclosporinas/metabolismo , Maleato de Dizocilpina/metabolismo , Glucosa/metabolismo , Hipocampo/fisiología , Fármacos Neuroprotectores/metabolismo , Oxígeno/metabolismo , Animales , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas , Ratas Wistar
16.
Biochim Biophys Acta ; 1817(10): 1747-53, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22414665

RESUMEN

Existing literature on estradiol indicates that it affects mitochondrial functions at low micromolar concentrations. Particularly blockade of the permeability transition pore (PTP) or modulation of the enzymatic activity of one or more complexes of the respiratory chain were suspicious. We prepared mitoplasts from rat liver mitochondria (RLM) to study by single-channel patch-clamp techniques the PTP, and from rat astrocytes to study the potassium BK-channel said to modulate the PTP. Additionally, we measured respiration of intact RLM. After application of 17ß-estradiol (ßE) our single-channel results reveal a transient increase of activity of both, the BK-channel and the PTP followed by their powerful inhibition. Respiration measurements demonstrate inhibition of the Ca(2+)-induced permeability transition, as well, though only at higher concentrations (≥30µM). At lower concentrations, we observed an increase of endogenous- and state 2-respiration. Furthermore, we show that ßE diminishes the phosphorylating respiration supported by complex I-substrates (glutamate/malate) or by the complex II-substrate succinate. Taken together the results suggest that ßE affects mitochondria by several modes, including partial inhibition of the activities of ion channels of the inner membrane and of respiration. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Asunto(s)
Estradiol/farmacología , Estrógenos/farmacología , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Animales , Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Poro de Transición de la Permeabilidad Mitocondrial , Fosforilación/efectos de los fármacos , Ratas
17.
Biochem J ; 443(3): 747-55, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22295911

RESUMEN

The glutamate-dependent respiration of isolated BM (brain mitochondria) is regulated by Ca2+(cyt) (cytosolic Ca2+) (S0.5=225±22 nM) through its effects on aralar. We now also demonstrate that the α-glycerophosphate-dependent respiration is controlled by Ca2+(cyt) (S0.5=60±10 nM). At higher Ca2+(cyt) (>600 nM), BM accumulate Ca2+ which enhances the rate of intramitochondrial dehydrogenases. The Ca2+-induced increments of state 3 respiration decrease with substrate in the order glutamate>α-oxoglutarate>isocitrate>α-glycerophosphate>pyruvate. Whereas the oxidation of pyruvate is only slightly influenced by Ca2+(cyt), we show that the formation of pyruvate is tightly controlled by Ca2+(cyt). Through its common substrate couple NADH/NAD+, the formation of pyruvate by LDH (lactate dehydrogenase) is linked to the MAS (malate-aspartate shuttle) with aralar as a central component. A rise in Ca2+(cyt) in a reconstituted system consisting of BM, cytosolic enzymes of MAS and LDH causes an up to 5-fold enhancement of OXPHOS (oxidative phosphorylation) rates that is due to an increased substrate supply, acting in a manner similar to a 'gas pedal'. In contrast, Ca2+(mit) (intramitochondrial Ca2+) regulates the oxidation rates of substrates which are present within the mitochondrial matrix. We postulate that Ca2+(cyt) is a key factor in adjusting the mitochondrial energization to the requirements of intact neurons.


Asunto(s)
Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Calcio/metabolismo , Citosol/metabolismo , Malatos/metabolismo , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Animales , Cinética , Ratones , Fosforilación Oxidativa
18.
Mitochondrion ; 11(3): 421-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21167961

RESUMEN

We studied the functional properties of isolated brain mitochondria (BM) prepared from total rat brain (BM(total)) or from cerebral subregions under basal and Ca(2+) overload conditions in order to evaluate the effects of cyclosporine A (CsA) in a regiospecific manner. CsA-induced effects were compared with those of two derivatives-the none-immunosuppressive [O-(NH(2)(CH2)(5)NHC(O)CH(2))-D-Ser](8)-CsA (Cs9) and its congener, the immunosuppressive [D-Ser](8)-CsA. The glutamate/malate-dependent state 3 respiration of mitochondria (state 3(glu/mal)) differed in region-specific manner (cortex > striatum = cerebellum > substantia nigra > hippocampus), but was significantly increased by 1µM CsA (+21±5%) in all regions. Ca(2+) overload induced by addition of 20µM Ca(2+) caused a significant decrease of state 3(glu/mal) (-45 to -55%) which was almost completely prevented in the presence of 1µM CsA, 1µM Cs9 or 1µM [D-Ser](8)-CsA. Mitochondrial Ca(2+) accumulation thresholds linked to permeability transition (PT) as well as the rate and completeness of mitochondrial Ca(2+) accumulation differed between different brain regions. For the first time, we provide a detailed, regiospecific analysis of Ca(2+)-dependent properties of brain mitochondria. Regardless of their immunosuppressive impact, CsA and its analogues improved mitochondrial functional properties under control conditions. They also preserved brain mitochondria against Ca(2+) overload-mediated PT and functional impairments. Since Cs9 does not mediate immunosuppression, it might be used as a more specific PT inhibitor than CsA.


Asunto(s)
Encéfalo/efectos de los fármacos , Ciclosporina/metabolismo , Inhibidores Enzimáticos/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Calcio/metabolismo , Respiración de la Célula/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Masculino , Ratas
19.
Biochim Biophys Acta ; 1797(6-7): 1018-27, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20144582

RESUMEN

Despite extensive research, the regulation of mitochondrial function is still not understood completely. Ample evidence shows that cytosolic Ca2+ has a strategic task in co-ordinating the cellular work load and the regeneration of ATP by mitochondria. Currently, the paradigmatic view is that Cacyt2+ taken up by the Ca2+ uniporter activates the matrix enzymes pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and isocitrate dehydrogenase. However, we have recently found that Ca2+ regulates the glutamate-dependent state 3 respiration by the supply of glutamate to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier. Since this activation is not affected by ruthenium red, glutamate transport into mitochondria is controlled exclusively by extramitochondrial Ca2+. Therefore, this discovery shows that besides intramitochondrial also extramitochondrial Ca2+ regulates oxidative phosphorylation. This new mechanism acts as a mitochondrial "gas pedal", supplying the OXPHOS with substrate on demand. These results are in line with recent findings of Satrustegui and Palmieri showing that aralar as part of the malate-aspartate shuttle is involved in the Ca2+-dependent transport of reducing hydrogen equivalents (from NADH) into mitochondria. This review summarises results and evidence as well as hypothetical interpretations of data supporting the view that at the surface of mitochondria different regulatory Ca2+-binding sites exist and can contribute to cellular energy homeostasis. Moreover, on the basis of our own data, we propose that these surface Ca2+-binding sites may act as targets for neurotoxic proteins such as mutated huntingtin and others. The binding of these proteins to Ca2+-binding sites can impair the regulation by Ca2+, causing energetic depression and neurodegeneration.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Animales , Antiportadores/metabolismo , Canales de Calcio/metabolismo , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Ácido Glutámico/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Biológicos , Oxidorreductasas/metabolismo , Consumo de Oxígeno , Canales Aniónicos Dependientes del Voltaje/metabolismo
20.
PLoS One ; 5(2): e9367, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20186336

RESUMEN

BACKGROUND: Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson's disease (PD). Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined. METHODOLOGY/PRINCIPAL FINDINGS: Using DJ-1 loss of function cellular models from knockout (KO) mice and human carriers of the E64D mutation in the DJ-1 gene we define a novel role of DJ-1 in the integrity of both cellular organelles, mitochondria and lysosomes. We show that loss of DJ-1 caused impaired mitochondrial respiration, increased intramitochondrial reactive oxygen species, reduced mitochondrial membrane potential and characteristic alterations of mitochondrial shape as shown by quantitative morphology. Importantly, ultrastructural imaging and subsequent detailed lysosomal activity analyses revealed reduced basal autophagic degradation and the accumulation of defective mitochondria in DJ-1 KO cells, that was linked with decreased levels of phospho-activated ERK2. CONCLUSIONS/SIGNIFICANCE: We show that loss of DJ-1 leads to impaired autophagy and accumulation of dysfunctional mitochondria that under physiological conditions would be compensated via lysosomal clearance. Our study provides evidence for a critical role of DJ-1 in mitochondrial homeostasis by connecting basal autophagy and mitochondrial integrity in Parkinson's disease.


Asunto(s)
Autofagia , Péptidos y Proteínas de Señalización Intracelular/genética , Mitocondrias/metabolismo , Proteínas Oncogénicas/genética , Animales , Western Blotting , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Ratones Noqueados , Microscopía Electrónica , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Mutación , Proteínas Oncogénicas/metabolismo , Fosforilación Oxidativa , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Peroxirredoxinas , Fosforilación , Proteína Desglicasa DJ-1 , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...