Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(10): 12886-12896, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38425182

RESUMEN

Eco-friendly solution processing and the low-cost synthesis of photoactive materials are important requirements for the commercialization of organic solar cells (OSCs). Although varieties of aqueous-soluble acceptors have been developed, the availability of aqueous-processable polymer donors remains quite limited. In particular, the generally shallow highest occupied molecular orbital (HOMO) energy levels of existing polymer donors limit further increases in the power conversion efficiency (PCE). Here, we design and synthesize two water/alcohol-processable polymer donors, poly[(thiophene-2,5-diyl)-alt-(2-((13-(2,5,8,11-tetraoxadodecyl)-2,5,8,11-tetraoxatetradecan-14-yl)oxy)-6,7-difluoroquinoxaline-5,8-diyl)] (P(Qx8O-T)) and poly[(selenophene-2,5-diyl)-alt-(2-((13-(2,5,8,11-tetraoxadodecyl)-2,5,8,11-tetraoxatetradecan-14-yl)oxy)-6,7-difluoroquinoxaline-5,8-diyl)] (P(Qx8O-Se)) with oligo(ethylene glycol) (OEG) side chains, having deep HOMO energy levels (∼-5.4 eV). The synthesis of the polymers is achieved in a few synthetic and purification steps at reduced cost. The theoretical calculations uncover that the dielectric environmental variations are responsible for the observed band gap lowering in OEG-based polymers compared to their alkylated counterparts. Notably, the aqueous-processed all-polymer solar cells (aq-APSCs) based on P(Qx8O-T) and poly[(N,N'-bis(3-(2-(2-(2-methoxyethoxy)-ethoxy)ethoxy)-2-((2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-methyl)propyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-(2,5-thiophene)] (P(NDIDEG-T)) active layer exhibit a PCE of 2.27% and high open-circuit voltage (VOC) approaching 0.8 V, which are among the highest values for aq-APSCs reported to date. This study provides important clues for the design of low-cost, aqueous-processable polymer donors and the fabrication of aqueous-processable OSCs with high VOC.

2.
ACS Omega ; 9(7): 8082-8091, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405528

RESUMEN

Light trapping induced by the introduction of metallic nanoparticles has been shown to improve photo absorption in organic solar cells (OSCs). Researchers in the fields of plasmonics and organic photovoltaics work together to boost sunlight absorption and photon-electron interactions in order to improve device performance. In this contribution, an inverted OSC was fabricated by using indacenodithieno[3,2-b]thiophene-alt-2,2'-bithiazole (PIDTT-BTz) as a wide-band gap donor copolymer and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor. Silver nanorods (Ag-NRs), synthesized by precipitation method, were embedded in the active layer of the solar cell. The device fabricated with 1 wt % Ag-NRs in the active layer showed a 26% improvement in power conversion efficiency (PCE) when exposed to 100 mW/cm2 simulated solar illumination. The role of Ag-NRs in the performance improvement of the OSCs was analyzed systematically using morphological, electrical, and optical characterization methods. The light trapping and exciton generation were improved due to the localized surface plasmon resonance (LSPR) activated in Ag-NRs in the form of longitudinal and transverse modes. The photoactive layers (PIDTT-BTz:PC71BM) with the incorporation of 0.5 and 1 wt % Ag-NR showed increased absorption, while the absorption with 1.5 wt % Ag-NRs appeared to be reduced in the wavelength range from 400 to 580 nm. Ag-NRs play a favorable role in exciton photogeneration and dissociation due to the two LSPR modes generated by the Ag-NRs. In the optimized device, the short-circuit current density (JSC) increased from 11.92 to 14.25 mA/cm2, resulting in an increase in the PCE from 3.94 to 4.93%, which is attributed to the improved light-trapping by LSPR using Ag-NRs.

3.
Angew Chem Int Ed Engl ; 62(45): e202302888, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37380618

RESUMEN

The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular π-π interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.

4.
RSC Adv ; 13(24): 16175-16184, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37260711

RESUMEN

Recently, plasmonic nanoparticles (NPs) have attracted considerable attention as good candidates for enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs) owing to their localized surface plasmon resonance (LSPR). In this study, the effect of embedding colloidal gold nanoparticles (cAu NPs) in the ZnO electron transport layer (ETL) on the PCEs of wide band gap polymer-based inverted OSCs was investigated. The active layer was composed of a bulk heterojunction of conjugated polymer based on indacenodithieno[3,2-b]thiophene and 5,5'-di(thiophen-2-yl)-2,2'-bithiazole PIDTT-DTBTz as a donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor. The PCE of the reference device was improved by 22% when 10 wt% cAu NPs were embedded in the ZnO ETL. The short circuit current density (JSC) and fill factor (FF) were the main photovoltaic parameters contributing to the PCE enhancement. An improved absorption in the active layer due to the LSPR of cAu NPs as well as efficient exciton dissociation and charge collection were found to be the reasons for the enhanced JSC while the increase in FF was mainly due to the suppressed traps and improved conductivity of the ZnO layer by the NPs.

6.
J Mater Chem C Mater ; 10(15): 5929-5933, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35517642

RESUMEN

The luminescence and electroluminescence of an ethyne-linked zinc(ii) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (λ > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs.

7.
Adv Mater ; 34(6): e2107361, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34820914

RESUMEN

High efficiency and mechanical robustness are both crucial for the practical applications of all-polymer solar cells (all-PSCs) in stretchable and wearable electronics. In this regard, a series of new polymer acceptors (PA s) is reported by incorporating a flexible conjugation-break spacer (FCBS) to achieve highly efficient and mechanically robust all-PSCs. Incorporation of FCBS affords the effective modulation of the crystallinity and pre-aggregation of the PA s, and achieves the optimal blend morphology with polymer donor (PD ), increasing both the photovoltaic and mechanical properties of all-PSCs. In particular, an all-PSC based on PYTS-0.3 PA incorporated with 30% FCBS and PBDB-T PD demonstrates a high power conversion efficiency (PCE) of 14.68% and excellent mechanical stretchability with a crack onset strain (COS) of 21.64% and toughness of 3.86 MJ m-3 , which is significantly superior to those of devices with the PA without the FCBS (PYTS-0.0, PCE = 13.01%, and toughness = 2.70 MJ m-3 ). To date, this COS is the highest value reported for PSCs with PCEs of over 8% without any insulating additives. These results reveal that the introduction of FCBS into the conjugated backbone is a highly feasible strategy to simultaneously improve the PCE and stretchability of PSCs.

8.
J Phys Chem Lett ; 11(10): 3796-3802, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32338006

RESUMEN

The dissociation of hybrid local exciton and charge transfer excitons (LE-CT) in efficient bulk-heterojunction nonfullerene solar cells contributes to reduced nonradiative photovoltage loss, a mechanism that still remains unclear. Herein we studied the energetic and entropic contribution in the hybrid LE-CT exciton dissociation in devices based on a conjugated terpolymer. Compared with reference devices based on ternary blends, the terpolymer devices demonstrated a significant reduction in the nonradiative photovoltage loss, regardless of the acceptor molecule, be it fullerene or nonfullerene. Fourier transform photocurrent spectroscopy revealed a significant LE-CT character in the terpolymer-based solar cells. Temperature-dependent hole mobility and photovoltage confirm that entropic and energetic effects contribute to the efficient LE-CT dissociation. The energetic disorder value measured in the fullerene- or nonfullerene-based terpolymer devices suggested that this entropic contribution came from the terpolymer, a signature of higher disorder in copolymers with multiple aromatic groups. This gives new insight into the fundamental physics of efficient LE-CT exciton dissociation with smaller nonradiative recombination loss.

9.
Macromolecules ; 53(24): 11106-11119, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33583955

RESUMEN

Stable doping of indacenodithieno[3,2-b]thiophene (IDTT) structures enables easy color tuning and significant improvement in the charge storage capacity of electrochromic polymers, making use of their full potential as electrochromic supercapacitors and in other emerging hybrid applications. Here, the IDTT structure is copolymerized with four different donor-acceptor-donor (DAD) units, with subtle changes in their electron-donating and electron-withdrawing characters, so as to obtain four different donor-acceptor copolymers. The polymers attain important form factor requirements for electrochromic supercapacitors: desired switching between achromatic black and transparent states (L*a*b* 45.9, -3.1, -4.2/86.7, -2.2, and -2.7 for PIDTT-TBT), high optical contrast (72% for PIDTT-TBzT), and excellent electrochemical redox stability (Ired/Iox ca. 1.0 for PIDTT-EBE). Poly[indacenodithieno[3,2-b]thiophene-2,8-diyl-alt-4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-(2-hexyldecyl)-2H-benzo[d][1,2,3]triazole-7,7'-diyl] (PIDTT-EBzE) stands out as delivering simultaneously a high contrast (69%) and doping level (>100%) and specific capacitance (260 F g-1). This work introduces IDTT-based polymers as bifunctional electro-optical materials for potential use in color-tailored, color-indicating, and self-regulating smart energy systems.

10.
Adv Mater ; 31(22): e1807275, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30790384

RESUMEN

All-polymer solar cells (all-PSCs) based on n- and p-type polymers have emerged as promising alternatives to fullerene-based solar cells due to their unique advantages such as good chemical and electronic adjustability, and better thermal and photochemical stabilities. Rapid advances have been made in the development of n-type polymers consisting of various electron acceptor units for all-PSCs. So far, more than 200 n-type polymer acceptors have been reported. In the last seven years, the power conversion efficiency (PCE) of all-PSCs rapidly increased and has now surpassed 10%, meaning they are approaching the performance of state-of-the-art solar cells using fullerene derivatives as acceptors. This review discusses the design criteria, synthesis, and structure-property relationships of n-type polymers that have been used in all-PSCs. Additionally, it highlights the recent progress toward photovoltaic performance enhancement of binary, ternary, and tandem all-PSCs. Finally, the challenges and prospects for further development of all-PSCs are briefly considered.

11.
Adv Mater ; : e1706584, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29987856

RESUMEN

Due to the so-called energy-gap law and aggregation quenching, the efficiency of organic light-emitting diodes (OLEDs) emitting above 800 nm is significantly lower than that of visible ones. Successful exploitation of triplet emission in phosphorescent materials containing heavy metals has been reported, with OLEDs achieving remarkable external quantum efficiencies (EQEs) up to 3.8% (peak wavelength > 800 nm). For OLEDs incorporating fluorescent materials free from heavy or toxic metals, however, we are not aware of any report of EQEs over 1% (again for emission peaking at wavelengths > 800 nm), even for devices leveraging thermally activated delayed fluorescence (TADF). Here, the development of polymer light-emitting diodes (PLEDs) peaking at 840 nm and exhibiting unprecedented EQEs (in excess of 1.15%) and turn-on voltages as low as 1.7 V is reported. These incorporate a novel triazolobenzothiadiazole-based emitter and a novel indacenodithiophene-based transport polymer matrix, affording excellent spectral and transport properties. To the best of knowledge, such values are the best ever reported for electroluminescence at 840 nm with a purely organic and solution-processed active layer, not leveraging triplet-assisted emission.

12.
ACS Macro Lett ; 7(4): 395-400, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35619351

RESUMEN

The synthesis of an acceptor polymer PIDT-2TPD, comprising indacenodithiophene (IDT) as the electron-rich unit and an interconnected bithieno[3,4-c]pyrrole-4,4',6,6'-tetrone (2TPD) as the electron-deficient unit, and its application for all-polymer photodetectors is reported. The optical, electrochemical, charge transport, and device properties of a blend of poly(3-hexylthiophene) and PIDT-2TPD are studied. The blend shows strong complementary absorption and balanced electron and hole mobility, which are desired properties for a photoactive layer. The device exhibits dark current density in the order of 10-5 mA/cm2, external quantum efficiency broadly above 30%, and nearly planar detectivity over the entire visible spectral range (maximum of 1.1 × 1012 Jones at 610 nm) under -5 V bias. These results indicate that PIDT-2TPD is a highly functional new type of acceptor and further motivate the use of 2TPD as a building block for other n-type materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA