RESUMEN
Saxitoxin (STX), an exceptionally potent marine toxin for which no antidote is currently available, is produced by methanogens and cyanobacteria. This poses a significant threat to both shellfish aquaculture and human health. Consequently, the development of a rapid, highly sensitive STX detection method is of great significance. The objective of this research is to create a novel approach for identifying STX. Therefore, amplified luminescent proximity homogeneous assay (AlphaLISA) was established using a direct competition method based on the principles of fluorescence resonance energy transfer and antigen-antibody specific binding. This method is sensitive, rapid, performed without washing, easy to operate, and can detect 8-128 ng/mL of STX in only 10 min. The limit of detection achieved by this method is as low as 4.29 ng/mL with coefficients of variation for the intra-batch and inter-batch analyses ranging from 2.61% to 3.63% and from 7.67% to 8.30%, respectively. In conclusion, our study successfully establishes a simple yet sensitive, rapid, and accurate AlphaLISA method for the detection of STX which holds great potential in advancing research on marine biotoxins.
Asunto(s)
Mediciones Luminiscentes , Saxitoxina , Mariscos , Saxitoxina/análisis , Mariscos/análisis , Animales , Mediciones Luminiscentes/métodos , Límite de Detección , Contaminación de Alimentos/análisis , Transferencia Resonante de Energía de FluorescenciaRESUMEN
Melanoma, the most perilous form of skin cancer, is known for its inherent resistance to chemotherapy. Even with advances in tumor immunotherapy, the survival of patients with advanced or recurrent melanomas remains poor. Over time, melanoma tumor cells may produce excessive angiogenic factors, necessitating the use of combinations of angiogenesis inhibitors, including broad-spectrum options, to combat melanoma. Among these inhibitors, Endostatin is one of the most broad-spectrum and least toxic angiogenesis inhibitors. We found Endostatin significantly increased the infiltration of CD8+ T cells and reduced the infiltration of M2 tumor-associated macrophages (TAMs) in the melanoma tumor microenvironment (TME). Interestingly, we also observed high expression levels of programmed death 1 (PD-1), an essential immune checkpoint molecule associated with tumor immune evasion, within the melanoma tumor microenvironment despite the use of Endostatin. To address this issue, we investigated the effects of a plasmid expressing Endostatin and PD-1 siRNA, wherein Endostatin was overexpressed while RNA interference (RNAi) targeted PD-1. These therapeutic agents were delivered using attenuated Salmonella in melanoma-bearing mice. Our results demonstrate that pEndostatin-siRNA-PD-1 therapy exhibits optimal therapeutic efficacy against melanoma. We found that pEndostatin-siRNA-PD-1 therapy promotes the infiltration of CD8+ T cells and the expression of granzyme B in melanoma tumors. Importantly, combined inhibition of angiogenesis and PD-1 significantly suppresses melanoma tumor progression compared with the inhibition of angiogenesis or PD-1 alone. Based on these findings, our study suggests that combining PD-1 inhibition with angiogenesis inhibitors holds promise as a clinical strategy for the treatment of melanoma.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Ratones , Animales , Endostatinas/genética , Endostatinas/uso terapéutico , Endostatinas/metabolismo , Receptor de Muerte Celular Programada 1/genética , Factor A de Crecimiento Endotelial Vascular/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Linfocitos T CD8-positivos/metabolismo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/tratamiento farmacológico , Inhibidores de la Angiogénesis/uso terapéutico , Plásmidos , Salmonella/genética , Microambiente TumoralRESUMEN
Pepsinogen, secreted from the gastric mucosa, is the precursor of pepsin. It is categorized as pepsinogen 1 and pepsinogen 2 based on its immunogenicity. The pepsinogen content that can enter the blood circulation through the capillaries of the gastric mucosa is approximately 1% and remains stable all the time. The pepsinogen content in serum will change with the pathological changes of gastric mucosa. Therefore, the level of pepsinogen in serum can play a role in serologic biopsy to reflect the function and morphology of different regions of gastric mucosa and serve as an indicator of gastric disease. This study conducts relevant research on serum pepsinogen 1, pepsinogen 2, and the ratio of pepsinogen 1 to pepsinogen 2, and reviews their important value in clinical diagnosis of Helicobacter pylori infection, gastric ulcer, and even gastric carcinoma, providing ideas for other researchers.
RESUMEN
INTRODUCTION: It is important to achieve proper root position during orthodontic treatment involving future dental implant placement. However, current methods to evaluate root position are either inaccurate or expose patients to relatively high radiation levels. A new approach using an expected root position (ERP) setup has previously demonstrated the potential to accurately monitor root position with minimal radiation. This study aimed to evaluate whether the ERP setup is an accurate and reliable method to determine if the roots adjacent to an edentulous site are appropriate for the anticipated dental implant. METHODS: In this retrospective study, the ERP setup was generated for 22 edentulous sites selected from the University of California San Francisco Division of Orthodontics patient database. The mesiodistal angulation of all teeth adjacent to the edentulous sites and the mesiodistal space between the teeth were measured in the ERP setup and compared with the posttreatment cone-beam computed tomography (CBCT) scan, which served as the control. The intraoperator and interoperator reliability and agreement between the ERP setup and the posttreatment CBCT scan were assessed using Bland-Altman analysis. The correlation between measurements was further evaluated by the Pearson correlation coefficient. RESULTS: The Bland-Altman plots and the Pearson correlation coefficient displayed strong agreement between the ERP setup and the posttreatment CBCT scan, with only 11.4% mesiodistal angulation measurements beyond the clinically acceptable range of ± 2.5°. All mesiodistal angulations and distances were strongly correlated with high intraoperator and interoperator reliabilities. CONCLUSION: The method to generate an ERP set up to evaluate the mesiodistal angulation and space of an edentulous site prepared for a future dental implant has been demonstrated to be accurate and reliable.
Asunto(s)
Implantes Dentales , Raíz del Diente , Humanos , Raíz del Diente/diagnóstico por imagen , Imagenología Tridimensional/métodos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Tomografía Computarizada de Haz Cónico/métodosRESUMEN
Triacsins are an intriguing class of specialized metabolites possessing a conserved N-hydroxytriazene moiety not found in any other known natural products. Triacsins are notable as potent acyl-CoA synthetase inhibitors in lipid metabolism, yet their biosynthesis has remained elusive. Through extensive mutagenesis and biochemical studies, we here report all enzymes required to construct and install the N-hydroxytriazene pharmacophore of triacsins. Two distinct ATP-dependent enzymes were revealed to catalyze the two consecutive N-N bond formation reactions, including a glycine-utilizing, hydrazine-forming enzyme (Tri28) and a nitrite-utilizing, N-nitrosating enzyme (Tri17). This study paves the way for future mechanistic interrogation and biocatalytic application of enzymes for N-N bond formation.
Asunto(s)
Coenzima A Ligasas/metabolismo , Streptomyces aureofaciens/enzimología , Streptomyces aureofaciens/genética , Triazenos/metabolismo , Biocatálisis , Escherichia coli/genética , Glicina/química , Hidrazinas/química , Metabolismo de los Lípidos , Lípidos/química , Nitritos/química , Triazenos/químicaRESUMEN
Food-borne nanoparticles (FNs) may be used as nanocarriers for metal ion chelation in micronutrient supplements. In this paper, the preparation and characterization of hydrophilic FNs were reported from beef broth cooked with a pressure cooker at 117 °C for different periods (30, 50, and 70 min) and their potential application as nanocarriers for zinc was investigated. The broth FNs are quasi-spherical with good water solubility and ultrasmall size, which can emit a strong sapphire color under 365 nm ultraviolet irradiation. X-ray photoelectron spectroscopy (XPS) analysis showed that there are carboxyl, amino, and hydroxyl groups on the FNs, which are useful for Zn(II) chelation. The vibration band of CâO at 1688 cm-1 in the infrared spectrum of FNs shifted to 1718 cm-1 after binding with Zn(II) ions, suggesting the participation of the carbonyl group in Zn(II) ion chelation. The appearance of Zn2p XPS peaks, at 1021.6 and 1045 eV for Zn(II)-FNs, clearly demonstrated the formation of Zn-O between the FNs and zinc ions. Biodistribution of FNs and the Zn(II)-FN complex in normal rat kidney cells demonstrated that they could easily enter normal rat kidney cells. A downfield was found for the signals of Zn(II)-FNs in 1H nuclear magnetic resonance spectroscopy and strongly suggested the binding of Zn(II) ions to FNs through carboxylic acid, hydroxyl, and amine groups. In addition, no obvious cytotoxicity was found for Zn(II)-FNs compared to zinc (ZnSO4) and commercial zinc gluconate. The results revealed that the FNs from beef broth may have a potential as nanocarriers for zinc chelation.
Asunto(s)
Portadores de Fármacos/química , Productos de la Carne/análisis , Nanopartículas/química , Zinc/química , Animales , Bovinos , Línea Celular , Quelantes/química , Composición de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Ratas , Solubilidad , Distribución TisularRESUMEN
Triacsins are a family of natural products having in common an N-hydroxytriazene moiety not found in any other known secondary metabolites. Though many studies have examined the biological activity of triacsins in lipid metabolism, their biosynthesis has remained unknown. Here we report the identification of the triacsin biosynthetic gene cluster in Streptomyces aureofaciens ATCC 31442. Bioinformatic analysis of the gene cluster led to the discovery of the tacrolimus producer Streptomyces tsukubaensis NRRL 18488 as a new triacsin producer. In addition to targeted gene disruption to identify necessary genes for triacsin production, stable isotope feeding was performed in vivo to advance the understanding of N-hydroxytriazene biosynthesis.