Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(37): e202308961, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37488950

RESUMEN

Co-insertion of protons happens widely and enables divalent-ion aqueous batteries to achieve high performances. However, detailed investigations and comprehensive understandings of proton co-insertion are scarce. Herein, we demonstrate that proton co-insertion into tunnel materials is determined jointly by interface derivation and inner diffusion: at the interface, hdrated Mg2+ has poor insertion kinetics, and therefore accumulates and hydrolyzes to produce protons; in the tunnels, co-inserted/lattice H2 O molecules block the Mg2+ diffusion while facilitate the proton diffusion. When monoclinic vanadium dioxide (VO2 (B)) anode is tested in Mg(CH3 COO)2 aqueous solution, the formation of Mg-rich solid electrolyte interphase on the VO2 (B) electrode and co-insertion of derived protons are probed; in the tunnels, the diffusion energy barrier of Mg2+ +H2 O is 2.7 eV, while that of the protons is 0.37 eV. Thus, protons dominate the subsequent insertion and inner diffusion. As a consequence, the VO2 (B) achieves a high capacity of 257.0 mAh g-1 at 1 A g-1 , a high rate retention of 59.1 % from 1 to 8 A g-1 , and stable cyclability of 3000 times with a capacity retention of 81.5 %. This work provides an in-depth understanding of the proton co-insertion and may promote the development of rechargeable aqueous batteries.

3.
Small ; 19(28): e2207080, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37013594

RESUMEN

Prussian blue analogs (PBAs) are promising cathode materials for potassium-ion batteries (KIBs) owing to their large open framework structure. As the K+ migration rate and storage sites rely highly on the periodic lattice arrangement, it is rather important to guarantee the high crystallinity of PBAs. Herein, highly crystalline K2 Fe[Fe(CN)6 ] (KFeHCF-E) is synthesized by coprecipitation, adopting the ethylenediaminetetraacetic acid dipotassium salt as a chelating agent. As a result, an excellent rate capability and ultra-long lifespan (5000 cycles at 100 mA g-1 with 61.3% capacity maintenance) are achieved when tested in KIBs. The highest K+ migration rate of 10-9 cm2 s-1 in the bulk phase is determined by the galvanostatic intermittent titration technique. Remarkably, the robust lattice structure and reversible solid-phase K+ storage mechanism of KFeHCF-E are proved by in situ XRD. This work offers a simple crystallinity optimization method for developing high-performance PBAs cathode materials in advanced KIBs.

4.
Angew Chem Int Ed Engl ; 61(31): e202206717, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35610667

RESUMEN

Zinc-ion batteries (ZIB) present great potential in energy storage due to low cost and high safety. However, the poor stability, dendrite growth, and narrow electrochemical window limit their practical application. Herein, we develop a new eutectic electrolyte consisting of ethylene glycol (EG) and ZnCl2 for dendrite-free and long-lifespan ZIBs. The EG molecules participate in the Zn2+ solvation via coordination and hydrogen-bond interactions. Optimizing the ZnCl2 /EG molar ratio (1 : 4) can strengthen intermolecular interactions to form [ZnCl(EG)]+ and [ZnCl(EG)2 ]+ cations. The dissociation-reduction of these complex cations enables the formation of a Cl-rich organic-inorganic hybrid solid electrolyte interphase film on a Zn anode, realizing highly reversible Zn plating/stripping with long-term stability of ≈3200 h. Furthermore, the polyaniline||Zn cell manifests decent cycling performance with ≈78 % capacity retention after 10 000 cycles, and the assembled pouch cell demonstrates high safety and stable capacity. This work opens an avenue for developing eutectic electrolytes for high-safety and practical ZIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA