Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(22): e202403044, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38517205

RESUMEN

Dual bioorthogonal labeling enables the investigation and understanding of interactions in the biological environment that are not accessible by a single label. However, applying two bioorthogonal reactions in the same environment remains challenging due to cross-reactivity. We developed a pair of differently modified 2'-deoxynucleosides that solved this issue for dual and orthogonal labeling of DNA. Inverse-electron demand Diels-Alder and photoclick reactions were combined to attach two different fluorogenic labels to genomic DNA in cells. Using a small synthetic library of 1- and 3-methylcyclopropenyl-modified 2'-deoxynucleosides, two 2'-deoxyuridines were identified to be the fastest-reacting ones for each of the two bioorthogonal reactions. Their orthogonal reactivity could be evidenced in vitro. Primer extension experiments were performed with both 2'-deoxyuridines investigating their replication properties as substitutes for thymidine and evaluating subsequent labeling reactions on the DNA level. Finally, dual, orthogonal and metabolic fluorescent labeling of genomic DNA was demonstrated in HeLa cells. An experimental procedure was developed combining intracellular transport and metabolic DNA incorporation of the two 2'-deoxyuridines with the subsequent dual bioorthogonal labeling using a fluorogenic cyanine-styryl tetrazine and a fluorogenic pyrene-tetrazole. These results are fundamental for advanced metabolic labeling strategies for nucleic acids in the future, especially for live cell experiments.


Asunto(s)
Ciclopropanos , ADN , Colorantes Fluorescentes , Humanos , ADN/química , ADN/metabolismo , Células HeLa , Ciclopropanos/química , Ciclopropanos/metabolismo , Colorantes Fluorescentes/química , Reacción de Cicloadición , Estructura Molecular
2.
Chembiochem ; 25(4): e202300739, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38050918

RESUMEN

An orange- and a red-emitting tetrazine-modified cyanine-styryl dyes were synthesized for bioorthogonal labelling of DNA by means of the Diels-Alder reaction with inverse electron demand. Both dyes use the concept of the "two-factor" fluorogenicity for nucleic acids: (i) The dyes are nucleic-acid sensitive by their non-covalent binding to DNA, and (ii) their covalently attached tetrazine moiety quench the fluorescence. As a result, the reaction with bicyclononyne- and spirohexene-modified DNA is significantly accelerated up to k2 =280,000 M-1 s-1 , and the fluorescence turn-on is enhanced up to 305. Both dyes are cell permeable even in low concentrations and undergo fluorogenic reactions with spirohexene-modified DNA in living HeLa cells. The fluorescence is enhanced in living cells to such an extent that washing procedures before cell imaging are not required. Their large Stokes shifts (up to 0.77 eV) also makes them well suited for imaging because the wavelength ranges for excitation and emission can be best possible separated. Furthermore, the spirohexene-modified nucleosides and DNA extend and improve the toolbox of already existing "clickable" dyes for live cell imaging.


Asunto(s)
Colorantes Fluorescentes , Compuestos Heterocíclicos , Humanos , Células HeLa , ADN , Reacción de Cicloadición
3.
ACS Chem Biol ; 18(5): 1054-1059, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36921617

RESUMEN

A selection of four different 2'-deoxyuridines with three different dienophiles of different sizes was synthesized. Their inverse electron demand Diels-Alder reactivity increases from k2 = 0.15 × 10-2 M-1 s-1 to k2 = 105 × 10-2 M-1 s-1 with increasing ring strain of the dienophiles. With a fluorogenic tetrazine-modified cyanine-styryl dye as reactive counterpart the fluorescence turn-on ratios lie in the range of 21-48 suitable for wash-free cellular imaging. The metabolic DNA labeling was visualized by a dot blot on a semiquantitative level and by confocal fluorescence microscopy on a qualitative level. A clear correlation between the steric demand of the dienophiles and the incorporation efficiency of the modified 2'-deoxyuridines into cellular DNA was observed. Even 2'-deoxyuridines with larger dienophiles, such as norbornene and cyclopropene, were incorporated to a detectable level into the nascent genomic DNA. This was achieved by an optimized way of cell culturing. This expands the toolbox of modified nucleosides for metabolic labeling of nucleic acids in general.


Asunto(s)
ADN , Electrones , Reacción de Cicloadición , Nucleósidos
4.
Chemistry ; 29(8): e202203156, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36367152

RESUMEN

Two green fluorescent tetrazine-modified cyanine-styryl dyes were synthesized for bioorthogonal labelling of DNA by means of the Diels-Alder reaction with inverse electron demand. With DNA as target biopolymer the fluorescence of these dyes is released by two factors: (i) sterically by their interaction with DNA, and (ii) structurally via the conjugated tetrazine as quencher moiety. As a result, the reaction with bicyclononyne-modified DNA is significantly accelerated up to ≥284,000 M-1 s-1 , and the fluorescence turn-on is enhanced up to 560 by the two-factor fluorogenicity. These dyes are cell permeable even in low concentrations and undergo fluorogenic reactions with BCN-modified DNA in living HeLa cells. The two-factor fluorescence release improves the signal-to-noise ratio such that washing procedures prior to cell imaging are not needed, which is a great advantage for live cell imaging of DNA and RNA in the future.


Asunto(s)
ADN , Compuestos Heterocíclicos , Humanos , Células HeLa , Colorantes Fluorescentes , Reacción de Cicloadición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...