Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Drug Des Devel Ther ; 16: 3385-3394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199632

RESUMEN

Objective: A sensitive and rapid UPLC-MS/MS method for determination of tazemetostat in rat plasma was developed, and the pharmacokinetics of herb-drug interactions (HDIs) of plumbagin (PLB) and tazemetostat was investigated. Methods: After the rat plasma samples were precipitated by acetonitrile, tazemetostat and verubecestat (ISTD) were detected. Gradient elution was performed with 0.1% formic acid and acetonitrile as mobile phases. The multi-reaction monitoring was used with ESI+ source, and the ion pairs for tazemetostat and ISTD were m/z 573.12→135.99 and m/z 410.10→124.00, respectively. 12 SD rats were randomly divided into the control group and the experimental group, 6 rats in each group. The rats in the experimental group were given PLB 100 mg/kg by gavage once a day for 7 consecutive days. The rats in the control group were given the same amount of 0.1% sodium carboxymethyl cellulose solution by gavage once a day for 7 consecutive days. At the seventh day, tazemetostat (80 mg/kg) was given and the blood was collected at different time points. The main parameters of pharmacokinetics were calculated and the herb-drug interactions (HDIs) were evaluated. Results: In the calibrated range of 1-1000 ng/mL, tazemetostat had a good linearity. The extraction recovery was more than 84%, and the RSD of intra-batch and inter-batch precision were both less than 15%. The Cmax of tazemetostat in the experimental group was 32.48% higher than that in the control group, and the AUC(0-t) and AUC(0-∞) of tazemetostat in the experimental group were 46.24% and 46.67% higher than that in the control group, respectively, and the t1/2 was prolonged from 10.56 h to 11.73 h. Conclusion: A simple, rapid and sensitive UPLC-MS/MS method for the determination of tazemetostat in rat plasma was established. PLB can inhibit the metabolism of tazemetostat and increase the plasma exposure of tazemetostat in rats.


Asunto(s)
Interacciones de Hierba-Droga , Espectrometría de Masas en Tándem , Acetonitrilos , Animales , Benzamidas , Compuestos de Bifenilo , Carboximetilcelulosa de Sodio , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Morfolinas , Naftoquinonas , Piridonas , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sodio , Espectrometría de Masas en Tándem/métodos
2.
J Anal Methods Chem ; 2022: 2823214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164482

RESUMEN

The primary objective of this study was to develop and validate an efficient and accurate ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach as a means to detect tropifexor plasma concentrations in beagle dogs and to study its pharmacokinetic profile in beagle dogs. The chromatographic separation of tropifexor and oprozomib (internal standard, ISTD) on the column, with the addition of acetonitrile for rapid precipitation and protein extraction, was achieved with 0.1% formic acid aqueous solution-acetonitrile for the mobile phase. A Xevo TQ-S triple quadrupole tandem mass spectrometer, under the selective reaction monitoring (SRM) mode, for the determination of the concentrations in the positive ion mode. The mass transfer pairs of tropifexor and oprozomib (ISTD) were m/z 604.08 ⟶ 228.03 and m/z 533.18 ⟶ 199.01, respectively. The profile displayed well linearity with calibration curves for tropifexor and oprozomib (ISTD) ranging from 1.0 to 200 ng/mL. In parallel, the lower limit of quantification (LLOQ) value for tropifexor could be measured with the aid of this novel technique at 1.0 ng/mL. In addition, the scope of intraday and interday for analyte accuracy was between -4.86% and 1.16%, with a precision of <7.31%. The recoveries of the analytes were >88.13% and were free of significant matrix effects. The stability met the requirements for the quantification of plasma samples under various conditions. Finally, the pharmacokinetic profile of tropifexor in beagle dog plasma following oral administration of 0.33 mg/kg tropifexor was determined by using the method facilitated in this work.

3.
Drug Des Devel Ther ; 15: 4865-4873, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34876808

RESUMEN

BACKGROUND: A new UPLC-MS/MS technique for the determination of ripretinib in beagle dog plasma was developed, and the pharmacokinetic effects of voriconazole and itraconazole on ripretinib in beagle dogs were studied. METHODS: After extraction with ethyl acetate under alkaline conditions, ripretinib was detected using avapritinib as the internal standard (IS). The mobile phases were 0.1% formic acid-acetonitrile. The scanning method was multi-reaction monitoring using ESI+ source, and the ion pairs for ripretinib and IS were m/z 509.93→416.85 and 499.1→482.09, respectively. This animal experiment adopted a three period self-control experimental design. In the first period, ripretinib was orally administered to six beagle dogs at a dose of 5 mg/kg. In the second period, the same six beagle dogs were orally given itraconazole at a dose of 7 mg/kg, after 30 min, ripretinib was orally given. In the third period, voriconazole at a dose of 7 mg/kg was given orally, and then ripretinib was orally given. At different time points, the blood samples were collected. The concentration of ripretinib was detected, and the pharmacokinetic parameters of ripretinib were calculated. RESULTS: Ripretinib had a good linear relationship in the range of 1-1000 ng/mL. The precision, accuracy, recovery, matrix effect and stability met the requirements of the guiding principles. After erdafitinib combined with itraconazole, the Cmax and AUC0→t of ripretinib increased by 38.35% and 36.36%, respectively, and the t1/2 was prolonged to 7.53 h. After ripretinib combined with voriconazole, the Cmax and AUC0→t of ripretinib increased by 37.44% and 25.52%, respectively, and the t1/2 was prolonged to 7.33 h. CONCLUSION: A new and reliable UPLC-MS/MS technique was fully optimized and developed to detect the concentration of ripretinib in beagle dog plasma. Itraconazole and voriconazole could inhibit the metabolism of ripretinib in beagle dogs and increase the plasma exposure of ripretinib.


Asunto(s)
Itraconazol/farmacocinética , Naftiridinas/farmacocinética , Urea/análogos & derivados , Voriconazol/farmacocinética , Administración Oral , Animales , Cromatografía Líquida de Alta Presión , Perros , Femenino , Itraconazol/sangre , Itraconazol/química , Masculino , Naftiridinas/sangre , Naftiridinas/química , Espectrometría de Masas en Tándem , Urea/sangre , Urea/química , Urea/farmacocinética , Voriconazol/sangre , Voriconazol/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...