Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 12(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37629254

RESUMEN

BACKGROUND: There is a group of polycystic ovary syndrome (PCOS) patients in clinic who have diminished ovarian reserve (DOR) in combination. This study was designed to evaluate the differences in glucolipid metabolism, hypothalamic-pituitary-ovarian (HPO) axis-related parameters, and autoimmune antibodies in PCOS patients with and without DOR. METHODS: A total of 2307 PCOS patients, including 1757 patients with PCOS alone and 550 patients who have both PCOS and DOR, were enrolled in this retrospective study. Parameters of glucolipid metabolism, HPO axis-related parameters, and autoimmune antibodies were measured and analyzed. RESULTS: The prevalence of DOR among all patients with PCOS was 23.84%. Many HPO axis-related parameters, such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and prolactin (PRL) were significantly different in PCOS with DOR compared with PCOS without DOR. The FSH levels were positively correlated with LH, testosterone (T), and androstenedione (AD) levels, but had no association with glucolipid metabolism after adjusting for body mass index (BMI). Moreover, anti-ovarian antibody (AOAb) and anti-21-OH antibody (21-OHAb) levels were significantly elevated in PCOS patients with DOR. CONCLUSIONS: PCOS patients with DOR showed more chaotic HPO axis hormone levels and elevated autoimmune antibodies, suggesting that autoimmune factors may be the cause of DOR in women with PCOS.

2.
NPJ Biofilms Microbiomes ; 9(1): 47, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422471

RESUMEN

Knowledge gaps that limit the development of therapies for polycystic ovary syndrome (PCOS) concern various environmental factors that impact clinical characteristics. Circadian dysrhythmia contributes to glycometabolic and reproductive hallmarks of PCOS. Here, we illustrated the amelioration of Limosilactobacillus reuteri (L. reuteri) on biorhythm disorder-ignited dyslipidemia of PCOS via a microbiota-metabolite-liver axis. A rat model of long-term (8 weeks) darkness treatment was used to mimic circadian dysrhythmia-induced PCOS. Hepatic transcriptomics certified by in vitro experiments demonstrated that increased hepatic galanin receptor 1 (GALR1) due to darkness exposure functioned as a critical upstream factor in the phosphoinositide 3-kinase (PI3K)/protein kinase B pathway to suppress nuclear receptors subfamily 1, group D, member 1 (NR1D1) and promoted sterol regulatory element binding protein 1 (SREBP1), inducing lipid accumulation in the liver. Further investigations figured out a restructured microbiome-metabolome network following L. reuteri administration to protect darkness rats against dyslipidemia. Notably, L. reuteri intervention resulted in the decrease of Clostridium sensu stricto 1 and Ruminococcaceae UCG-010 as well as gut microbiota-derived metabolite capric acid, which could further inhibit GALR1-NR1D1-SREBP1 pathway in the liver. In addition, GALR antagonist M40 reproduced similar ameliorative effects as L. reuteri to protect against dyslipidemia. While exogenous treatment of capric acid restrained the protective effects of L. reuteri in circadian disruption-induced PCOS through inhibiting GALR1-dependent hepatic lipid metabolism. These findings purport that L. reuteri could serve for circadian disruption-associated dyslipidemia. Manipulation of L. reuteri-capric acid-GALR1 axis paves way for clinical therapeutic strategies to prevent biorhythm disorder-ignited dyslipidemia in PCOS women.


Asunto(s)
Dislipidemias , Limosilactobacillus reuteri , Síndrome del Ovario Poliquístico , Humanos , Ratas , Femenino , Animales , Receptor de Galanina Tipo 1 , Fosfatidilinositol 3-Quinasas , Dislipidemias/etiología , Dislipidemias/prevención & control
3.
Food Sci Nutr ; 11(2): 794-805, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36789067

RESUMEN

The aim of this study was to evaluate the effect of fruit and vegetable intake on gut microbiota using a mouse model of metabolic syndrome (MS) induced by a high-fat diet. Forty-eight male mice were randomly divided into four groups, control group (C), high-fat diet-fed model group (H), high fat plus low intake of fruits and vegetables diet-fed group (H.LFV), high fat plus high intake of fruits and vegetables diet-fed group (H.HFV), and each group were fed for 60 days. During the experiment, mouse body weights were recorded and fecal samples were collected. Cetyltrimethyl ammonium bromide (CTAB) method was used to extract fecal bacterial DNA, and the purity and concentration of the DNA were detected by electrophoresis. DNA samples underwent PCR amplification (primers in 16 S V4 (515F and 806R)). Raw sequencing data were processed, and sample complexity and multiple-sample comparisons were investigated. Mouse organ coefficient, serum lipid levels, fecal TC (total cholesterol) and TBA (total bile acid) levels, and hepatic glutathione and malondialdehyde levels were determined. Compared to the H group, the fecal TC and TBA levels decreased significantly in the H.HFV group (p < .05), and hepatic glutathione and malondialdehyde levels decreased significantly in both H.LFV and H.HFV groups (p < .05). Decreased abundance of Firmicutes, Burkholderiales, Syntrophomonas, and Pseudomonadales in gut microbiota was observed in H.LFV and H.HFV groups compared to the H group. The Anosim results showed significant differences in pairwise comparison between groups. The linear discriminant analysis effect size (LEfSe) results showed that k_bacteria not only exhibited statistically differences between H and C groups but also among H.LFV, H.LFV, and H groups, and hence, could be used as a biomarker between groups. To sum up, fruit and vegetable powder could increase the fecal excretion of TC and TBA, and the antioxidant capacity in C57BL/6N mice. Meanwhile, the mechanism that fruit and vegetable powder could prevent MS in C57BL/6N mice was related to the decreased abundance of gut microbiota, including Firmicutes, Syntrophomonadales, and Pseudomonadales. Hence, fruit and vegetable powder could be used as a recommended food to regulate gut microbiota and prevent the occurrence of MS-related diseases.

4.
Front Cell Dev Biol ; 10: 954186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353509

RESUMEN

Polycystic ovary syndrome (PCOS) is a common and complex disorder impairing female fertility, yet its etiology remains elusive. It is reported that circadian rhythm disruption might play a crucial role in PCOS pathologic progression. Here, in this research, we investigated the effect of environmental long-term circadian rhythm dysfunction and clarified its pathogenic mechanism in the development of PCOS, which might provide the targeted clinical strategies to patients with PCOS. Female SD rats were used to construct a circadian rhythm misalignment model with constant darkness (12/12-h dark/dark cycle), and the control group was kept under normal circadian rhythm exposure (12/12-h light/dark cycle) for 8 weeks. We measured their reproductive, endocrinal, and metabolic profiles at different zeitgeber times (ZTs). Different rescue methods, including melatonin receptor agonist and normal circadian rhythm restoration, and in vitro experiments on the KGN cell line were performed. We found that long-term darkness caused PCOS-like reproductive abnormalities, including estrous cycle disorder, polycystic ovaries, LH elevation, hyperandrogenism, and glucose intolerance. In addition, the expression of melatonin receptor 1A (Mtnr1a) in ovarian granulosa cells significantly decreased in the darkness group. Normal light/dark cycle and melatonin receptor agonist application relieved hyperandrogenism of darkness-treated rats. In vitro experiments demonstrated that decreased MTNR1A inhibited androgen receptor (AR) and CYP19A1 expression, and AR acted as an essential downstream factor of MTNR1A in modulating aromatase abundance. Overall, our finding demonstrates the significant influence of circadian rhythms on PCOS occurrence, suggests that MTNR1A and AR play vital roles in pathological progression of hyperandrogenism, and broadens current treatment strategies for PCOS in clinical practice.

5.
J Appl Toxicol ; 41(11): 1719-1731, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34365652

RESUMEN

Female reproduction is precisely regulated by hormones, and the ovary is easily affected by environmental endocrine disruptors (EDCs), which are ubiquitous in industrialized societies. Parabens are EDCs that are used as antibacterial preservatives in cosmetics, personal care products (PCPs), medicines, and food. We used ultrahigh-performance liquid chromatography-mass spectrometry to quantitatively detect methyl-, ethyl-, butyl-, and propylparaben (PP) concentrations in urine samples from 74 women of childbearing age. Balb/c mice were subcutaneously injected with 100 mg/kg/day of PP for 21 consecutive days or 100 or 1,000 mg/kg/day of PP during superovulation. Various concentrations of PP (ranging from 1 to 1,000 nM) were added to a human ovarian granulosa tumor-derived cell line (KGN) culture for 24 h. The urinary paraben concentrations of women who used cosmetics and other PCPs within 48 h prior to sample collection were significantly elevated, and the PP concentration was significantly positively correlated with the basal estradiol concentration. After PP injection, the mouse serum estradiol concentrations were significantly increased, estrus cycles were disordered, corpus luteum number was reduced, and number of oocytes retrieved was significantly reduced. In in vitro experiments, PP treatment increased estradiol synthesis and the expression levels of aromatase enzyme (CYP19A1) and steroidogenic acute regulatory protein. This study demonstrates the adverse effects of PP on ovarian estradiol secretion and ovulation, further evaluates the safety of PP as a preservative, and provides guidance for the use of PCPs and cosmetics by women of childbearing age.


Asunto(s)
Disruptores Endocrinos/efectos adversos , Parabenos/efectos adversos , Conservadores Farmacéuticos/efectos adversos , Adulto , Animales , China , Disruptores Endocrinos/orina , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ovario/efectos de los fármacos , Parabenos/metabolismo , Conservadores Farmacéuticos/metabolismo , Adulto Joven
6.
Mol Ther Nucleic Acids ; 23: 614-628, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33552682

RESUMEN

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in premenopausal women. Long non-coding RNAs (lncRNAs) constitute important factors in numerous biological processes. However, their roles in PCOS pathogenesis require further clarification. Our study aims to elucidate the roles of lncRNA lnc-CCNL1-3:1 (CCNL) in PCOS. CCNL expression in human luteinized granulosa cells (hLGCs) derived from women with and without PCOS was detected. The full length of CCNL was obtained by 5' and 3' rapid amplification of cDNA ends. CCNL roles in granulosa cell apoptosis, mitochondrial function, and glucose uptake were evaluated. The binding relationship between CCNL and forkhead box O1 (FOXO1) was determined by RPISeq, RNA immunoprecipitation, subcellular fractionation, and immunofluorescence. In KGN cells and hLGCs, CCNL overexpression upregulated FOXO1 expression, promoted cell apoptosis, reduced glucose transport capability, and impaired mitochondrial function, and these effects were partially abolished by silencing FOXO1. The interaction of CCNL with FOXO1 might prevents FOXO1 exclusion from the nucleus and subsequent degradation in the cytosol. We determined that CCNL serve as a facilitator in the processes of PCOS. CCNL might participate in PCOS pathologies such as follicular atresia and insulin resistance.

7.
Mol Ther ; 29(3): 1279-1293, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33212300

RESUMEN

Polycystic ovary syndrome (PCOS) is an endocrine-related disease and global cause of infertility that is associated with abnormal folliculogenesis. Inhibited granulosa cell (GC) proliferation is recognized as a key factor that underlies aberrant follicle maturation. Many epigenetic landscape modifications have been characterized in PCOS patients. However, the epigenetic regulation pathways in follicular dysplasia are not completely understood. In this study, we reported a novel mechanism of DNA hypomethylation induced by long non-coding RNAs (lncRNAs) and its function in cell cycle progression. We observed that lnc-MAP3K13-7:1 was highly expressed in GCs from patients with PCOS, with concomitant global DNA hypomethylation, decreased DNA methyltransferase 1 (DNMT1) expression, and increased cyclin-dependent kinase inhibitor 1A (CDKN1A, p21) expression. In KGN cells, lnc-MAP3K13-7:1 overexpression resulted in cell cycle arrest in the G0/G1 phase, as well as the molecular inhibition and genetic silencing of DNMT1. Mechanistically, lnc-MAP3K13-7:1 inhibited DNMT1 expression by acting as a protein-binding scaffold and inducing ubiquitin-mediated DNMT1 protein degradation. Moreover, DNMT1-dependent CDKN1A promoter hypomethylation increased CDKN1A transcription, resulting in attenuated GC growth. Our work uncovered a novel and essential mechanism through which lnc-MAP3K13-7:1-dependent DNMT1 inhibition regulates CDKN1A/p21 expression and inhibits GC proliferation.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Células de la Granulosa/patología , Ovario/patología , Síndrome del Ovario Poliquístico/patología , ARN Largo no Codificante/genética , Apoptosis , Biomarcadores/metabolismo , Ciclo Celular , Movimiento Celular , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Células de la Granulosa/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/genética , Ovario/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Pronóstico , Regiones Promotoras Genéticas , Células Tumorales Cultivadas , Ubiquitinación
8.
Am J Physiol Endocrinol Metab ; 319(1): E81-E90, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32396496

RESUMEN

We have previously shown that systemic injection of erythropoietin-producing hepatocellular receptor A7 (EPHA7)-Fc raises serum luteinizing hormone (LH) levels before ovulation in female rats, indicating the induction of EPHA7 in ovulation. In this study, we aimed to identify the mechanism and hypothalamus-pituitary-ovary (HPO) axis level underlying the promotion of LH secretion by EPHA7. Using an ovariectomized (OVX) rat model, in conjunction with low-dose 17ß-estradiol (E2) treatment, we investigated the association between EPHA7-ephrin (EFN)A5 signaling and E2 negative feedback. Various rat models (OVX, E2-treated OVX, and abarelix treated) were injected with the recombinant EPHA7-Fc protein through the caudal vein to investigate the molecular mechanism underlying the promotion of LH secretion by EPHA7. Efna5 was observed strongly expressed in the arcuate nucleus of the female rat by using RNAscope in situ hybridization. Our results indicated that E2, combined with estrogen receptor (ER)α, but not ERß, inhibited Efna5 and gonadotropin-releasing hormone 1 (Gnrh1) expressions in the hypothalamus. In addition, the systemic administration of EPHA7-Fc restrained the inhibition of Efna5 and Gnrh1 by E2, resulting in increased Efna5 and Gnrh1 expressions in the hypothalamus as well as increased serum LH levels. Collectively, our findings demonstrated the involvement of EPHA7-EFNA5 signaling in the regulation of LH and the E2 negative feedback pathway in the hypothalamus, highlighting the functional role of EPHA7 in female reproduction.


Asunto(s)
Efrina-A5/metabolismo , Receptor alfa de Estrógeno/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hormona Luteinizante/metabolismo , Precursores de Proteínas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Efrina-A5/efectos de los fármacos , Efrina-A5/genética , Estradiol/farmacología , Receptor beta de Estrógeno/metabolismo , Estrógenos/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/fisiología , Femenino , Hormona Liberadora de Gonadotropina/efectos de los fármacos , Antagonistas de Hormonas/farmacología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/efectos de los fármacos , Hormona Luteinizante/efectos de los fármacos , Oligopéptidos/farmacología , Ovariectomía , Ovario/efectos de los fármacos , Ovario/metabolismo , Precursores de Proteínas/efectos de los fármacos , Ratas , Receptor EphA7/genética , Receptor EphA7/metabolismo , Receptor EphA7/farmacología , Proteínas Recombinantes
9.
Transl Res ; 219: 13-29, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32119846

RESUMEN

The mechanisms underlying metabolic and reproductive dysfunction caused by arrhythmic circadian clock and their involvement in polycystic ovary syndrome (PCOS) are not understood. Here, we addressed this issue using rats with constant light or darkness exposure for 8 weeks and human leukocytes and serum of PCOS and non-PCOS patients. Additionally, we utilized HepG2 cells and KGN cells to verify the molecular mechanisms. The arrhythmic expressions of circadian clock genes due to constant darkness induced the metabolic and reproductive hallmarks of PCOS in rats. After exposure to constant darkness, decreased brain and muscle ARNT-like protein 1 (BMAL1) promoted insulin resistance via glucose transporter 4 (GLUT4), and decreased period (PER) 1 and PER2 promoted androgen excess via insulin-like growth factor-binding protein 4 (IGFBP4) and sex hormone binding globulin (SHBG) in the liver. Hyperinsulinemia and hyperandrogenism shared a bidirectional link promoting aberrant expression of circadian genes and inducing apoptosis of ovarian granulosa cells. Notably, the altered expressions of circadian clock genes in darkness-treated rats matched those of PCOS patients. Furthermore, melatonin treatment relieved the hyperinsulinemia and hyperandrogenism of darkness-treated rats via BMAL1, PER1, and PER2. Restoring normal light/dark exposure for 2 weeks reversed these conditions via BMAL1. In conclusion, our findings elucidated the critical function of circadian clock genes, especially BMAL1, PER1, and PER2 in PCOS, which might aid the development of feasible preventive and therapeutic strategies for PCOS in women with biorhythm disorder.


Asunto(s)
Relojes Circadianos , Oscuridad , Hiperandrogenismo/terapia , Resistencia a la Insulina , Síndrome del Ovario Poliquístico/fisiopatología , Factores de Transcripción ARNTL/metabolismo , Animales , Apoptosis/fisiología , Femenino , Células de la Granulosa/patología , Hiperandrogenismo/fisiopatología , Insulina/fisiología , Hígado/metabolismo , Ratas , Ratas Sprague-Dawley , Testosterona/fisiología
10.
Front Genet ; 10: 772, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507635

RESUMEN

Polycystic ovary syndrome (PCOS) is a common metabolic and reproductive disorder with an increasing risk for type 2 diabetes. Insulin resistance is a common feature of women with PCOS, but the underlying molecular mechanism remains unclear. This study aimed to screen critical long non-coding RNAs (lncRNAs) that might play pivotal roles in insulin resistance, which could provide candidate biomarkers and potential therapeutic targets for PCOS. Gene expression profiles of the skeletal muscle in patients with PCOS accompanied by insulin resistance and healthy patients were obtained from the publicly available Gene Expression Omnibus (GEO) database. A global triple network including RNA-binding protein, mRNA, and lncRNAs was constructed based on the data from starBase. Then, we extracted an insulin resistance-associated lncRNA-mRNA network (IRLMN) by integrating the data from starBase and GEO. We also performed a weighted gene co-expression network analysis (WGCNA) on the differentially expressed genes between the women with and without PCOS, to identify hub lncRNAs. Additionally, the findings of key lncRNAs were examined in an independent GEO dataset. The expression level of lncRNA RP11-151A6.4 in ovarian granulosa cells was increased in patients with PCOS compared with that in control women. Levels were also increased in PCOS patients with higher BMI, hyperinsulinemia, and higher HOMA-IR values. As a result, RP11-151A6.4 was identified as a hub lncRNA based on IRLMN and WGCNA and was highly expressed in ovarian granulosa cells, skeletal muscle, and subcutaneous and omental adipose tissues of patients with insulin resistance. This study showed the differences between lncRNA and mRNA profiles from healthy women and women with PCOS and insulin resistance. Here, we demonstrated that RP11-151A6.4 might play a vital role in insulin resistance, androgen excess, and adipose dysfunction in patients with PCOS. Further study concerning RP11-151A6.4 could elucidate the underlying mechanisms of insulin resistance.

11.
Biomed Eng Online ; 15(Suppl 2): 132, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-28155686

RESUMEN

BACKGROUND: Sequential and single grafting are two surgical procedures of coronary artery bypass grafting. However, it remains unclear if the sequential graft can be used between the right and left coronary artery system. The purpose of this paper is to clarify the possibility of right coronary artery system anastomosis to left coronary system. METHODS: A patient-specific 3D model was first reconstructed based on coronary computed tomography angiography (CCTA) images. Two different grafts, the normal multi-graft (Model 1) and the novel multi-graft (Model 2), were then implemented on this patient-specific model using virtual surgery techniques. In Model 1, the single graft was anastomosed to right coronary artery (RCA) and the sequential graft was adopted to anastomose left anterior descending (LAD) and left circumflex artery (LCX). While in Model 2, the single graft was anastomosed to LAD and the sequential graft was adopted to anastomose RCA and LCX. A zero-dimensional/three-dimensional (0D/3D) coupling method was used to realize the multi-scale simulation of both the pre-operative and two post-operative models. RESULTS: Flow rates in the coronary artery and grafts were obtained. The hemodynamic parameters were also showed, including wall shear stress (WSS) and oscillatory shear index (OSI). The area of low WSS and OSI in Model 1 was much less than that in Model 2. CONCLUSIONS: Model 1 shows optimistic hemodynamic modifications which may enhance the long-term patency of grafts. The anterior segments of sequential graft have better long-term patency than the posterior segments. With rational spatial position of the heart vessels, the last anastomosis of sequential graft should be connected to the main branch.


Asunto(s)
Aneurisma de la Aorta Abdominal/fisiopatología , Puente de Arteria Coronaria/métodos , Vasos Coronarios/fisiopatología , Stents , Arterias/fisiopatología , Simulación por Computador , Hemodinámica , Humanos , Imagenología Tridimensional , Modelos Cardiovasculares , Presión , Riesgo , Resistencia al Corte , Estrés Mecánico , Trombosis/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...