Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(12): 6053-6067, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38421016

RESUMEN

Mesoporous systems are ubiquitous in membrane science and applications due to their high internal surface area and tunable pore size. A new synthesis pathway of hydrolytic ionosilica films with mesopores formed by ionic liquid (IL) templating is proposed and compared with the traditional non-hydrolytic strategy. For both pathways, the multi-scale formation of pores has been studied as a function of IL content, combining the results of thermogravimetric analysis (TGA), nitrogen sorption, and small-angle X-ray scattering (SAXS). The combination of TGA and nitrogen sorption provides access to ionosilica and pore volume fractions, with contributions of meso- and macropores. We then elaborate an original and quantitative geometrical model to analyze the SAXS data based on small spheres (Rs = 1-2 nm) and cylinders (Lcyl = 10-20 nm) with radial polydispersity provided by the nitrogen sorption isotherms. As a result, we found that for a given incorporation of a templating IL, both synthesis pathways produce very similar pore geometries, but the better incorporation efficacy of the new hydrolytic films provides higher mesoporosity. Our combined study provides a coherent view of mesopore geometry, and thereby an optimization pathway of porous ionic membranes in terms of accessible mesoporosity contributing to the specific surface. Possible applications include electrolyte membranes with improved ionic properties, e.g., in fuel cells and batteries, as well as molecular storage.

2.
Eur Phys J E Soft Matter ; 46(6): 46, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37326783

RESUMEN

Small-angle scattering is a commonly used tool to analyze the dispersion of nanoparticles in all kinds of matrices. Besides some obvious cases, the associated structure factor is often complex and cannot be reduced to a simple interparticle interaction, like excluded volume only. In recent experiments, we have encountered a surprising absence of structure factors (S(q) = 1) in scattering from rather concentrated polymer nanocomposites (Genix et al. in ACS Appl Mater Interfaces 11(19):17863-17872, 2019). In this case, quite pure form factor scattering is observed. This somewhat "ideal" structure is further investigated here making use of reverse Monte Carlo simulations in order to shed light on the corresponding nanoparticle structure in space. By fixing the target "experimental" apparent structure factor to one over a given q-range in these simulations, we show that it is possible to find dispersions with this property. The influence of nanoparticle volume fraction and polydispersity has been investigated, and it was found that for high concentrations only a high polydispersity allows reaching a state of S = 1. The underlying structure in real space is discussed in terms of the pair-correlation function, which evidences the importance of attractive interactions between polydisperse nanoparticles. The calculation of partial structure factors shows that there is no specific ordering of large or small particles, but that the presence of attractive interactions together with polydispersity allows reaching an almost "structureless" state.


Asunto(s)
Nanocompuestos , Suspensiones
3.
J Phys Chem B ; 127(21): 4886-4895, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216432

RESUMEN

Liquid/liquid (L/L) interfaces play a key, yet poorly understood, role in a range of complex chemical phenomena where time-evolving interfacial structures and transient supramolecular assemblies act as gatekeepers to function. Here, we employ surface-specific vibrational sum frequency generation combined with neutron and X-ray scattering methods to track the transport of dioctyl phosphoric acid (DOP) and di-(2-ethylhexyl) phosphoric acid (DEHPA) ligands used in solvent extraction at buried oil/aqueous interfaces away from equilibrium. Our results show evidence for a dynamic interfacial restructuring at low ligand concentrations in contrast to expectation. These time-varying interfaces arise from the transport of sparingly soluble interfacial ligands into the neighboring aqueous phase. These results support a proposed "antagonistic" role of ligand complexation in the aqueous phase that could serve as a holdback mechanism in kinetic liquid extractions. These findings provide new insights into interfacially controlled chemical transport at L/L interfaces and how these interfaces vary chemically, structurally, and temporally in a concentration-dependent manner and present potential avenues to design selective kinetic separations.

4.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36839117

RESUMEN

Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by percolation of hard phases, which may be NP networks, dynamically modified polymer regions, or combinations of both. In this article, the impact on dispersion and dynamics of surface modification of the NPs by short monomethoxysilanes with eight carbons in the alkyl part (C8) is studied. As a function of grafting density and particle content, polymer dynamics is followed by broadband dielectric spectroscopy and analyzed by an interfacial layer model, whereas the particle dispersion is investigated by small-angle X-ray scattering and analyzed by reverse Monte Carlo simulations. NP dispersions are found to be destabilized only at the highest grafting. The interfacial layer formalism allows the clear identification of the volume fraction of interfacial polymer, with its characteristic time. The strongest dynamical slow-down in the polymer is found for unmodified NPs, while grafting weakens this effect progressively. The combination of all three techniques enables a unique measurement of the true thickness of the interfacial layer, which is ca. 5 nm. Finally, the comparison between longer (C18) and shorter (C8) grafts provides unprecedented insight into the efficacy and tunability of surface modification. It is shown that C8-grafting allows for a more progressive tuning, which goes beyond a pure mass effect.

5.
ACS Appl Mater Interfaces ; 15(5): 7496-7510, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36700938

RESUMEN

Fundamental understanding of the macroscopic properties of polymer nanocomposites (PNCs) remains difficult due to the complex interplay of microscopic dynamics and structure, namely interfacial layer relaxations and three-dimensional nanoparticle (NP) arrangements. The effect of surface modification by alkyl methoxysilanes at different grafting densities has been studied in PNCs made of poly(2-vinylpyridine) and spherical 20 nm silica NPs. The segmental dynamics has been probed by broadband dielectric spectroscopy and the filler structure by small-angle X-ray scattering and reverse Monte Carlo simulations. By combining the particle configurations with the interfacial layer properties, it is shown how surface modification tunes the attractive polymer-particle interactions: bare NPs slow down the polymer interfacial layer dynamics over a thickness of ca. 5 nm, while grafting screens these interactions. Our analysis of interparticle spacings and segmental dynamics provides unprecedented insights into the effect of surface modification on the main characteristics of PNCs: particle interactions and polymer interfacial layers.

6.
ACS Appl Mater Interfaces ; 13(30): 36262-36274, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34291639

RESUMEN

Understanding the complex structure of polymer blends filled with nanoparticles (NPs) is key to design their macroscopic properties. Here, the spatial distribution of hydrogenated (H) and deuterated (D) polymer chains asymmetric in mass is studied by small-angle neutron scattering. Depending on the chain mass, a qualitatively new large-scale organization of poly(vinyl acetate) chains beyond the random-phase approximation is evidenced in nanocomposites with attractive polymer-silica interactions. The silica is found to systematically induce bulk segregation. Only with long H-chains, a strong scattering signature is observed in the q range of the NP size: it is the sign of interfacial isotopic enrichment, that is, of contrasted polymer shells close to the NP surface. A quantitative model describing both the bulk segregation and the interfacial gradient (over ca. 10-20 nm depending on the NP size) is developed, showing that both are of comparable strength. In all cases, NP surfaces trap the polymer blend in a non-equilibrium state, with preferential adsorption around NPs only if the chain length and isotopic preference toward the surface combine their entropic and enthalpic driving forces. This structural evidence for interfacial polymer gradients will open the road for quantitative understanding of the dynamics of many-chain nanocomposite systems.

7.
ACS Macro Lett ; 10(2): 197-202, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35570778

RESUMEN

Supramolecular associations provide a promising route to functional materials with properties such as self-healing, easy recyclability or extraordinary mechanical strength and toughness. The latter benefit especially from the transient character of the formed network, which enables dissipation of energy as well as regeneration of the internal structures. However, recent investigations revealed intrinsic limitations in the achievable mechanical enhancement. This manuscript presents studies of a set of telechelic polymers with hydrogen-bonding chain ends exhibiting an extraordinarily high, almost glass-like, rubbery plateau. This is ascribed to the segregation of the associative ends into clusters and formation of an interfacial layer surrounding these clusters. An approach adopted from the field of polymer nanocomposites provides a quantitative description of the data and reveals the strongly altered mechanical properties of the polymer in the interfacial layer. These results demonstrate how employing phase separating dynamic bonds can lead to the creation of high-performance materials.


Asunto(s)
Nanocompuestos , Goma , Vidrio , Enlace de Hidrógeno , Polímeros/química
8.
J Phys Chem B ; 124(46): 10539-10545, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33164513

RESUMEN

Polymerized ionic liquids (PolyILs) are promising candidates for a broad range of technologies. However, the relatively low conductivity of PolyILs at room temperature has strongly limited their applications. In this work, we provide new insights into the roles of various microscopic parameters controlling ion transport in these polymers, which are crucial for their rational design and practical applications. Using broadband dielectric spectroscopy and neutron and light scattering techniques, we found a clear connection between the activation energy for conductivity, fast dynamics, and high-frequency shear modulus in PolyILs at their glass transition temperature (Tg). In particular, our analysis reveals a correlation between conductivity and the amplitude of fast picosecond fluctuations at Tg, suggesting the possible involvement of fast dynamics in lowering the energy barrier for ion conductivity. We also demonstrate that both the activation energy for ion transport and the amplitude of the fast fluctuations depend on the high-frequency shear moduli of PolyILs, thus identifying a practically important parameter for tuning conductivity. The parameters recognized in this work and their connection to the ionic conductivity of PolyILs set the stage for a deeper understanding of the mechanism of ion transport in PolyILs in the glassy state.

9.
Nanoscale ; 12(6): 3907-3915, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32003375

RESUMEN

We propose a method relying on structural measurements by small-angle scattering to quantitatively follow aggregation of nanoparticles (NPs) in concentrated colloidal assemblies or suspensions up to percolation, regardless of complex structure factors arising due to interactions. As an experimental model system, the dispersion of silica NPs in a styrene-butadiene matrix has been analyzed by small-angle X-ray scattering and transmission electron microscopy (TEM), as a function of particle concentration. A reverse Monte Carlo analysis applied to the NP scattering compared favorably with TEM. By combining it with an aggregate recognition algorithm, series of representative real space structures and aggregation number distribution functions have been determined up to high concentrations, taking into account particle polydispersity. Our analysis demonstrates that the formation of large percolating aggregates on the scale of the simulation box (of linear dimension 1/qmin, here micron-sized) can be mapped onto the macroscopic percolation characterized by rheology. Our method is thus capable of determining aggregate structure in dense NP systems with strong - possibly unknown - interactions visible in scattering. It is hoped to be useful in many other colloidal systems, beyond the case of polymer nanocomposites exemplarily studied here.

10.
ACS Macro Lett ; 9(6): 910-916, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35648525

RESUMEN

The segmental dynamics of styrene-butadiene nanocomposites with embedded silica nanoparticles (NPs, ca. 20 vol. %) has been studied by broadband dielectric (BDS) and neutron spin-echo spectroscopy (NSE). It is shown by BDS that overlapping contributions only allow us to conclude on a range of distributions of relaxation times in simplified industrial nanocomposites formed with highly polydisperse NPs. For comparison, structurally similar but less aggregated colloidal nanocomposites have a well-defined distribution of relaxation times due to the reduced influence of interfacial polarization processes. This distribution is widened with respect to the neat polymer, without change in the position of the maximum and at most a small slowing down visible in the average time. We then demonstrate that incoherent NSE can be used to resolve small modifications of segmental dynamics of the industrial samples. By carefully choosing the q-vector of the measurement, experiments with fully hydrogenated polymer give access to the self-dynamics of the polymer in the presence of silica on the scale of approximately 1 nm. Our high-resolution measurements show that the segmental motion is slightly but systematically slowed also by the presence of the industrial filler NPs.

11.
Phys Chem Chem Phys ; 21(27): 14775-14785, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31225557

RESUMEN

Polymerized ionic liquids (PolyILs) are promising materials for applications in electrochemical devices spanning from fuel cells to capacitors and batteries. In principle, PolyILs have a competitive advantage over traditional electrolytes in being single ion conductors and thus enabling a transference number close to unity. Despite this perceived advantage, surprisingly low room temperature ionic conductivities measured in the lab raise an important fundamental question: how does the molecular structure mediate conductivity? In this work, wide-angle X-ray scattering (WAXS), vibrational sum frequency generation (vSFG), and density functional theory (DFT) calculations were used to study the bulk and interfacial structure of PolyILs, while broad band dielectric spectroscopy (BDS) was used to probe corresponding dynamics and conductive properties for a series of the PolyIL samples with tunable chemistries and structures. Our results reveal that the size of the mobile anions has a tremendous impact on chain packing in PolyILs that wasn't addressed previously. Larger mobile ions tend to create a well-packed structure, while smaller ions frustrate chain packing. The magnitude of these changes and level of structural heterogeneity are shown to depend on the chemical functionality and flexibility of studied PolyILs. Furthermore, these experimental and computational results provide new insight into the correlation between conductivity and structure in PolyILs, suggesting that structural heterogeneity helps to reduce the activation energy for ionic conductivity in the glassy state.

12.
ACS Appl Mater Interfaces ; 11(19): 17863-17872, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31009193

RESUMEN

The dynamic and static properties of the interfacial region between polymer and nanoparticles have wide-ranging consequences on performances of nanomaterials. The thickness and density of the static layer are particularly difficult to assess experimentally due to superimposing nanoparticle interactions. Here, we tune the dispersion of silica nanoparticles in nanocomposites by preadsorption of polymer layers in the precursor solutions, and by varying the molecular weight of the matrix chains. Nanocomposite structures ranging from ideal dispersion to repulsive order or various degrees of aggregation are generated and observed by small-angle scattering. Preadsorbed chains are found to promote ideal dispersion, before desorption in the late stages of nanocomposite formation. The microstructure of the interfacial polymer layer is characterized by detailed modeling of X-ray and neutron scattering. Only in ideally well-dispersed systems a static interfacial layer of reduced polymer density over a thickness of ca. 2 nm is evidenced based on the analysis with a form-free density profile optimized using numerical simulations. This interfacial gradient layer is found to be independent of the thickness of the initially adsorbed polymer, but appears to be generated by out-of-equilibrium packing and folding of the preadsorbed layer. The impact of annealing is investigated to study the approach of equilibrium, showing that initially ideally well-dispersed systems adopt a repulsive hard-sphere structure, while the static interfacial layer disappears. This study thus promotes the fundamental understanding of the interplay between effects which are decisive for macroscopic material properties: polymer-mediated interparticle interactions, and particle interfacial effects on the surrounding polymer.

13.
ACS Macro Lett ; 8(8): 984-988, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35619482

RESUMEN

This paper presents an efficient way to measure the curing kinetics and gel point, αgel, in epoxy resins from one single experiment. The epoxy curing reaction is herein monitored using in situ and time-resolved near-infrared absorption spectroscopy (NIR). The curing profiles over different isothermal conditions are in good agreement with DSC. Furthermore, the increase of the NIR absorption bands of aromatic rings (unreactive throughout curing) probe the cure shrinkage, as more and more aromatic rings are localized within the fixed sample volume. Therefore, the gel point is determined using the onset of the aromatic absorption increase. The results are in good agreement with the theoretical gel point, as well as DMA results. This innovative approach enables gelation measurements on epoxy neat resins and film composites with an easy-to-perform, accurate, robust, and versatile method.

14.
ACS Appl Mater Interfaces ; 10(39): 33601-33610, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30203957

RESUMEN

The addition of nanoparticles to a polymer matrix is a well-known process to improve the mechanical properties of polymers. Many studies of mechanical reinforcement in polymer nanocomposites (PNCs) focus on rubbery matrices; however, much less effort concentrates on the factors controlling the mechanical performance of the technologically important glassy PNCs. This paper presents a study of the effect of the polymer molecular weight (MW) on the overall mechanical properties of glassy PNCs with attractive interaction by using Brillouin light scattering. We found that the mechanical moduli (bulk and shear) have a nonmonotonic dependence on MW that cannot be predicted by simple rule of mixtures. The moduli increase with increasing MW up to 100 kg/mol followed by a drop at higher MW. We demonstrate that the change in the mechanical properties of PNCs can be associated with the properties of the interfacial polymer layer. The latter depend on the interfacial chain packing and stretching, as well as polymer bridging, which vary differently with the MW of the polymer. These competing contributions lead to the observed nonmonotonic variations of the glassy PNC moduli with MW. Our work provides a simple, cost-effective, and efficient way to control the mechanical properties of glassy PNCs by tuning the polymer chain length. Our finding can be beneficial for the rational design of PNCs with desired mechanical performance.

15.
Soft Matter ; 14(25): 5161-5179, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29893402

RESUMEN

Recent experimental results using in particular small-angle scattering to characterize the self-assembly of mainly hard spherical nanoparticles into higher ordered structures ranging from fractal aggregates to ordered assemblies are reviewed. The crucial control of interparticle interactions is discussed, from chemical surface-modification, or the action of additives like depletion agents, to the generation of directional patches and the use of external fields. It is shown how the properties of interparticle interactions have been used to allow inducing and possibly controlling aggregation, opening the road to the generation of colloidal molecules or potentially metamaterials. In the last part, studies of the microstructure of polymer nanocomposites as an application of volume-spanning and stress-carrying aggregates are discussed.

16.
Langmuir ; 34(9): 3010-3020, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29443532

RESUMEN

A new method based on the combination of small-angle scattering, reverse Monte Carlo simulations, and an aggregate recognition algorithm is proposed to characterize the structure of nanoparticle suspensions in solvents and polymer nanocomposites, allowing detailed studies of the impact of different nanoparticle surface modifications. Experimental small-angle scattering is reproduced using simulated annealing of configurations of polydisperse particles in a simulation box compatible with the lowest experimental q-vector. Then, properties of interest like aggregation states are extracted from these configurations and averaged. This approach has been applied to silane surface-modified silica nanoparticles with different grafting groups, in solvents and after casting into polymer matrices. It is shown that the chemistry of the silane function, in particular mono- or trifunctionality possibly related to patch formation, affects the dispersion state in a given medium, in spite of an unchanged alkyl-chain length. Our approach may be applied to study any dispersion or aggregation state of nanoparticles. Concerning nanocomposites, the method has potential impact on the design of new formulations allowing controlled tuning of nanoparticle dispersion.

17.
Soft Matter ; 13(44): 8144-8155, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29105722

RESUMEN

Quantitative characterization of the average structure of dense nanoparticle assemblies and aggregates is a common problem in nanoscience. Small-angle scattering is a suitable technique, but it is usually limited to not too big assemblies due to the limited experimental range, low concentrations to avoid interactions, and monodispersity to keep calculations tractable. In the present paper, a straightforward analysis of the generally available scattered intensity - even for large assemblies, at high concentrations - is detailed, providing information on the local volume fraction of polydisperse particles with hard sphere interactions. It is based on the identical local structure of infinite homogeneous nanoparticle assemblies and their subsets forming finite-sized clusters. This approach is extended to polydispersity, using Monte-Carlo simulations of hard and moderately sticky hard spheres. As a result, a simple relationship between the observed structure factor minimum - termed the correlation hole - and the average local volume fraction κ on the scale of neighboring particles is proposed and validated through independent aggregate simulations. This relationship shall be useful as an efficient tool for the structural analysis of arbitrarily aggregated colloidal systems.

18.
Langmuir ; 33(27): 6804-6811, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28628746

RESUMEN

We study the swelling and shrinking behavior of core-shell microgels adsorbed on silicon wafers. In these systems, the core is made of cross-linked poly(N-isopropylmethacrylamide) and the shell consists of cross-linked poly(N-n-propylacrylamide). In suspension, these particles exhibit an extended linear swelling behavior in the temperature interval between the lower critical solution temperatures of the two polymers. Using ellipsometry and atomic force microscopy, we show that this linear response is also observed in the adsorbed state.

19.
Faraday Discuss ; 186: 295-309, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26782937

RESUMEN

Polymer nanocomposites are used widely, mainly for the industrial application of car tyres. The rheological behavior of such nanocomposites depends in a crucial way on the dispersion of the hard filler particles - typically silica nanoparticles embedded in a soft polymer matrix. It is thus important to assess the filler structure, which may be quite difficult for aggregates of nanoparticles of high polydispersity, and with strong interactions at high loading. This has been achieved recently using a coupled TEM/SAXS structural model describing the filler microstructure of simplified industrial nanocomposites with grafted or ungrafted silica of high structural disorder. Here, we present an original method capable of reducing inter-aggregate interactions by swelling of nanocomposites, diluting the filler to low-volume fractions. Note that this is impossible to reach by solid mixing due to the large differences in viscoelasticity between the composite and the pure polymer. By combining matrix crosslinking, swelling in a good monomer solvent, and post-polymerization of these monomers, it is shown that it is possible to separate the filler into small aggregates. The latter have then been characterized by electron microscopy and small-angle X-ray scattering, confirming the conclusions of the above mentioned TEM-SAXS structural model applied directly to the highly loaded cases.

20.
Langmuir ; 31(40): 10966-74, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26421961

RESUMEN

An original protocol of simultaneous surface modification and transfer from aqueous to organic phases of anatase TiO2 nanoparticles (NPs) using alkylphosphonic acids (PAs) is studied. The influence of the solvent, the nature and concentration of the PA, and the size, concentration, and aggregation state of the TiO2 NPs was investigated. Complete transfer was observed for linear alkyl chains (5, 8, 12, and 18 C atoms), even at very high sol concentrations. After transfer, the grafted NPs were characterized by (31)P solid-state MAS NMR. The dispersion state of NPs before and after phase transfer was monitored by dynamic light scattering (DLS). Small-angle neutron scattering (SANS) was used to characterize the structure of PA-grafted NPs in the organic solvent. Using a quantitative core-shell model cross-checked under different contrast conditions, it is found that the primary particles making up the NPs are homogeneously grafted with a solvated PA-layer. The nanometric thickness of the latter is shown to increase with the length of the linear carbon chain of the PA, independent of the size of the primary TiO2 NP. Interestingly, a reversible temperature-dependent aggregation was evidenced visually for C18PA, and confirmed by DLS and SANS: heating the sample induces the breakup of aggregates, which reassemble upon cooling. Finally, in the case of NPs agglomerated by playing with the pH or the salt concentration of the sols, the phase transfer with PA is capable of redispersing the agglomerates. This new and highly versatile method of NP surface modification with PAs and simultaneous transfer is thus well suited for obtaining well-dispersed grafted NPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...