Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Chem ; 360: 129896, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33989876

RESUMEN

The significant worldwide expansion of the health food market, which includes functional fruits and vegetables, requires a simple and rapid analytical method for the on-site analysis of functional components, such as carotenoids, in fruits and vegetables, and Raman spectroscopy is a powerful candidate. Herein, we clarified the effects of Raman exposure time on quantitative and discriminant analysis accuracies. Raman spectra of intact tomatoes with various carotenoid concentrations were acquired and used to develop partial least squares regression (PLSR) and partial least squares discriminant analysis (PLS-DA) models. The accuracy of the PLSR model was superior (R2 = 0.87) when Raman spectra were acquired 10 s, but decreased with decreasing exposure time (R2 = 0.69; 0.7 s). The accuracy of the PLS-DA model was unaffected by exposure time (hit rate: 90%). We conclude that Raman spectroscopy combined with PLS-DA is useful for the on-site analysis of carotenoids in fruits and vegetables.


Asunto(s)
Carotenoides/química , Solanum lycopersicum/química , Carotenoides/análisis , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Espectrometría Raman/métodos , Factores de Tiempo
2.
Food Chem ; 339: 128058, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950900

RESUMEN

To determine which cabbage head tissues are useful for evaluating freshness using spectroscopic technology, we stored wrapped and unwrapped cabbage heads for up to 30 d, and measured visible and near infrared spectra (420-2500 nm) of the 1st-10th leaf layers and cores. We found that spectral changes in leaves were affected both by leaf layer and storage conditions, while continuous spectral changes were observed in the cores regardless of storage condition. These spectral changes in the leaves and cores were consistent with color images and water content. While we developed good models for estimating the storage days from the 1st and 2nd leaf layers and the cores of unwrapped cabbages, only core spectra provided a high correlation with storage days in wrapped cabbages. These data demonstrated that the cabbage core is sensitive to storage duration and its spectra are useful for evaluating freshness decline regardless of storage condition.


Asunto(s)
Brassica/química , Calidad de los Alimentos , Almacenamiento de Alimentos , Espectroscopía Infrarroja Corta/métodos , Color , Análisis de los Alimentos/métodos , Hojas de la Planta/química , Agua/análisis
3.
Appl Spectrosc ; 75(4): 385-394, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33044085

RESUMEN

The present study has investigated the transformation of sesame oil kept at low temperature during a definite period of time for refinement (called winterization) as an inactive drug ingredient by using two-dimensional difference spectra (2D-DS) analysis of spectra collected using a near-infrared (NIR) and mid-infrared (MIR) dual-wavelength spectrometer (NIR-MIR-DWS). The NIR and MIR spectra were measured nearly simultaneously from samples of sesame oil before and after winterization. The difference spectrum analysis of the obtained NIR-MIR data elucidated that, after the winterization process, the absorbances at peaks attributed to C=O, C=C, and OH groups decrease while the absorbances arising from the main chain (CH2) increase. The result indicated the removal of lignan and the fatty acids with relatively short main chains. Moreover, sesame oil unwinterized was cooled from room temperature to near 1 ℃ and subsequently warmed to room temperature. And the cycle was repeated two times. Real-time monitoring during the cooling and warming processes were carried out using the NIR-MIR-DWS. The prediction results obtained from partial least square calibration model for the temperature suggests that there are subtle differences in the oil composition between the first cooling process and after the warming and cooling cycle. For the more detailed analysis, the 2D-DS method is proposed. The results of the analyses using 2D-DS revealed that the starting point of the transformation is around 15 ℃. It can be estimated that sesame oil is mainly transformed by the first cooling down. Moreover, it was implied that the structure of methylene (CH2) was significantly related to the modifications in sesame oil with temperature change. A series of experimental results elucidated that the winterization of sesame oil removed its impurities and stabilized its conditions. These results are probably the first report on the effect of the winterization process on sesame oil.


Asunto(s)
Preparaciones Farmacéuticas , Aceite de Sésamo , Análisis de los Mínimos Cuadrados , Espectrofotometría Infrarroja , Espectroscopía Infrarroja Corta
4.
Food Chem ; 258: 308-313, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-29655738

RESUMEN

The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to ß-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes.


Asunto(s)
Carotenoides/análisis , Espectrometría Raman/métodos , Análisis de los Mínimos Cuadrados , Luteína/análisis , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , beta Caroteno/análisis
5.
Food Chem ; 241: 353-357, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28958539

RESUMEN

In this study, a lycopene-content-based discriminant analysis was performed using a portable near-infrared-excited Raman spectrometer. In the vegetable-juice Raman spectra, the peak intensity of the lycopene band increased with increasing lycopene concentration, but scattering decreased the repeatability of the peak intensity. Consequently, developing a lycopene-concentration regression model using peak intensity is not straightforward. Therefore, a new method known as the product of mean intensity ratio (PMIR) analysis was developed to rapidly identify lycopene-rich samples on-site. In the PMIR analysis, Raman spectra are measured with short exposure times, confirming only the peaks of carotenoids with high concentrations, and thus the lycopene concentrations of vegetable juice samples could be determined successfully. Exposure times of 20ms and 100ms could detect lycopene concentrations of ≥5mg/100g and ≥2mg/100g with 93.2% and 97.7% accuracy, respectively; thus, lycopene-content-based discriminant analysis using the PMIR and a portable Raman spectrometer is feasible.


Asunto(s)
Carotenoides/análisis , Jugos de Frutas y Vegetales , Análisis Discriminante , Licopeno , Espectrometría Raman
6.
Appl Spectrosc ; 72(4): 551-561, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29262698

RESUMEN

We present a rapid switching system between a newly developed near-infrared (NIR) spectrometer and its imaging system to select the spot size of a diffuse reflectance (DR) probe. In a previous study, we developed a portable NIR imaging system, known as D-NIRs, which has significant advantages over other systems. Its high speed, high spectral resolution, and portability are particularly useful in the process of monitoring pharmaceutical tablets. However, the spectral accuracies relating to the changes in the formulation of the pharmaceutical tablets have not been fully discussed. Therefore, we improved the rapid optical switching system and present a new model of D-NIRs (ND-NIRs) here. This system can automatically switch the optical paths of the DR and NIR imaging probes, greatly contributing to the simultaneous measurement of both the imaging and spot. The NIR spectra of the model tablets, including 0-10% ascorbic acid, were measured and simultaneous NIR images of the tablets were obtained. The predicted results using spot sizes for the DR probe of 1 and 5 mm diameter, resulted in concentrations of R2 = 0.79 and 0.94, with root mean square errors (RMSE) of 1.78 and 0.89, respectively. For tablets with a high concentration of ascorbic acid, the NIR imaging results showed inhomogeneity in concentration. However, the predicted values for the low concentration samples appeared higher than the known concentration of the tablets, although the homogeneity of the concentration was confirmed. In addition, the optimal spot size using NIR imaging data was estimated to be 5-7 mm. The results obtained in this study show that the spot size of the fiber probe, attached to a spectrometer, is important in developing a highly reliable model to determine the component concentration of a tablet.


Asunto(s)
Química Farmacéutica/métodos , Tecnología de Fibra Óptica/instrumentación , Espectroscopía Infrarroja Corta/métodos , Comprimidos/análisis , Comprimidos/química , Química Farmacéutica/instrumentación , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador , Análisis de los Mínimos Cuadrados , Modelos Químicos , Espectroscopía Infrarroja Corta/instrumentación
7.
J Phys Chem B ; 121(34): 8046-8057, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28817278

RESUMEN

The present study investigates the structure of lycopene aggregates both in vitro and in vivo using ultraviolet-visible (UV-vis) and Raman spectroscopies. The electronic absorption bands of the J- and H-aggregates in vitro shift to lower and higher energies, respectively, compared to that of the lycopene monomer. Along with these results, the frequencies of the ν1 Raman bands were shifted to lower and higher frequencies, respectively. By plotting the frequencies of the ν1 Raman band against the S0 → S2 transition energy, a linear relationship between the data set with different aggregation conformations can be obtained. Therefore, the band positions depending on the different conformations can be explained based on the idea that the effective conjugated C═C chain lengths within lycopene molecules are different due to the environmental effect (site-shift effect) caused by the aggregation conformation. Applying this knowledge to the in vivo measurement of a tomato fruit sample, the relationship between the aggregation conformation of lycopene and the spectral patterns observed in the UV-vis as well as Raman spectra in different parts of tomato fruits was discussed in detail. The results showed that the concentration of lycopene (particularly that of the J-aggregate) specifically increased, whereas that of chlorophyll decreased, with ripening. Furthermore, Raman imaging indicated that lycopene with different aggregate conformations was distributed inhomogeneously, even within one sample. The layer formation in tomato tissues with high concentrations of J- and H-aggregates was successfully visualized. In this manner, the presence of lycopene distributions with different aggregate conformations was unveiled in vivo.


Asunto(s)
Carotenoides/química , Carotenoides/metabolismo , Electrones , Licopeno , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Teoría Cuántica , Espectrofotometría Ultravioleta , Espectrometría Raman
8.
Food Chem ; 191: 7-11, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26258695

RESUMEN

A simple and rapid method for the determination of free fatty acid (FFA) content in brown rice using Fourier transform infrared spectroscopy (FTIR) in conjunction with second-derivative treatment was proposed. Ground brown rice (10g) was soaked in toluene (20mL) for 30min, and the filtrate of the extract was placed in a 1mm CaF2 liquid cell. The transmittance spectrum of the filtrate was recorded using toluene for the background spectrum. The absorption band due to the CO stretching mode of FFAs was detected at 1710cm(-1), and the Savitzky-Golay second-derivative treatment was performed for band separation. A single linear regression model for FFA was developed using the 1710cm(-1) band in the second-derivative spectra of oleic acid in toluene (0.25-2.50gL(-1)), and the model displayed high prediction accuracy with a determination coefficient of 0.998 and a root mean square error of 0.03gL(-1).


Asunto(s)
Ácidos Grasos no Esterificados/análisis , Oryza/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos
9.
Appl Spectrosc ; 69(12): 1432-41, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26556507

RESUMEN

An alternative baseline correction method for diffuse reflection near-infrared (NIR) spectra, searching region standard normal variate (SRSNV), was proposed. Standard normal variate (SNV) is an effective pretreatment method for baseline correction of diffuse reflection NIR spectra of powder and granular samples; however, its baseline correction performance depends on the NIR region used for SNV calculation. To search for an optimal NIR region for baseline correction using SNV, SRSNV employs moving window partial least squares regression (MWPLSR), and an optimal NIR region is identified based on the root mean square error (RMSE) of cross-validation of the partial least squares regression (PLSR) models with the first latent variable (LV). The performance of SRSNV was evaluated using diffuse reflection NIR spectra of mixture samples consisting of wheat flour and granular glucose (0-100% glucose at 5% intervals). From the obtained NIR spectra of the mixture in the 10 000-4000 cm(-1) region at 4 cm intervals (1501 spectral channels), a series of spectral windows consisting of 80 spectral channels was constructed, and then SNV spectra were calculated for each spectral window. Using these SNV spectra, a series of PLSR models with the first LV for glucose concentration was built. A plot of RMSE versus the spectral window position obtained using the PLSR models revealed that the 8680­8364 cm(-1) region was optimal for baseline correction using SNV. In the SNV spectra calculated using the 8680­8364 cm(-1) region (SRSNV spectra), a remarkable relative intensity change between a band due to wheat flour at 8500 cm(-1) and that due to glucose at 8364 cm(-1) was observed owing to successful baseline correction using SNV. A PLSR model with the first LV based on the SRSNV spectra yielded a determination coefficient (R2) of 0.999 and an RMSE of 0.70%, while a PLSR model with three LVs based on SNV spectra calculated in the full spectral region gave an R2 of 0.995 and an RMSE of 2.29%. Additional evaluation of SRSNV was carried out using diffuse reflection NIR spectra of marzipan and corn samples, and PLSR models based on SRSNV spectra showed good prediction results. These evaluation results indicate that SRSNV is effective in baseline correction of diffuse reflection NIR spectra and provides regression models with good prediction accuracy.

10.
Appl Spectrosc ; 69(6): 665-70, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25955516

RESUMEN

The technique of moving-window two-dimensional heterospectral (MW2DHetero) correlation spectroscopy is proposed. This computational method is based on the ideas of perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy and two-dimensional heterospectral correlation analysis. Not only small spectral variations, but also detailed bands assignments were captured using the analysis. This method was applied to near-infrared (NIR) spectra in the 10 000-4000 cm(-1) region and mid-infrared (mid-IR) spectra in the 5000-1200 cm(-1) region, which were simultaneously detected using a dual-region spectrometer. Near-infrared and mid-IR spectra collected during an alcoholic fermentation process using a solution containing glucose and fructose were reported. Slight time differences for the consumption of sugars compared with the production of ethanol were found between 50 and 150 min. It was concluded that these slight time differences are evidence for different consumption times between glucose and fructose during the fermentation process. The result proved a possibility of the selective monitoring of the simultaneous reaction processes between productive and consumptive components.


Asunto(s)
Etanol/análisis , Etanol/metabolismo , Fermentación/fisiología , Espectrofotometría Infrarroja/métodos , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Etanol/química , Fructosa/análisis , Fructosa/metabolismo , Glucosa/análisis , Glucosa/metabolismo , Saccharomyces cerevisiae
11.
Molecules ; 20(3): 4007-19, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25741896

RESUMEN

In the present study we have developed a new version (ND-NIRs) of a polychromator-type near-infrared (NIR) spectrometer with a high-resolution photo diode array detector, which we built before (D-NIRs). The new version has four 5 W halogen lamps compared with the three lamps for the older version. The new version also has a condenser lens with a shorter focal point length. The increase in the number of the lamps and the shortening of the focal point of the condenser lens realize high signal-to-noise ratio and high-speed NIR imaging measurement. By using the ND-NIRs we carried out the in-line monitoring of pharmaceutical blending and determined an end point of the blending process. Moreover, to determinate a more accurate end point, a NIR image of the blending sample was acquired by means of a portable NIR imaging device based on ND-NIRs. The imaging result has demonstrated that the mixing time of 8 min is enough for homogeneous mixing. In this way the present study has demonstrated that ND-NIRs and the imaging system based on a ND-NIRs hold considerable promise for process analysis.


Asunto(s)
Química Farmacéutica/métodos , Tecnología Farmacéutica/métodos , Halógenos/química , Relación Señal-Ruido , Espectroscopía Infrarroja Corta/métodos
12.
Anal Sci ; 30(1): 143-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24420256

RESUMEN

The purpose of this review article is to outline the recent progress in near-infrared (NIR) imaging technology with particular emphasis on new instrumentation. Superior features of NIR imaging such as suitability for nondestructive and in-situ analysis, transmission ability, availability of optical fibers, high-speed monitoring and stability are very attractive not only for laboratory-based studies but also for diverse practical applications. In this review, introduction to chemical imaging is described, and then, a comparison among NIR, infrared (IR) and Raman imaging are made. Furthermore, the features of new NIR imaging instruments developed by our research group in collaboration with Yokogawa Electric Corporation and Sumitomo Electric Industries, Ltd. are discussed. Finally, some examples of applications of NIR imaging are introduced. Particularly, the performance and usefulness of the newly-developed imaging devices are demonstrated through their applications to pharmaceutical tablets and polymers.

13.
Anal Bioanal Chem ; 405(29): 9401-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24196120

RESUMEN

We have recently developed a novel portable NIR imaging device (D-NIRs), which has a high speed and high wavelength resolution. This NIR imaging approach has been developed by utilizing D-NIRs for studying the dissolution of a model tablet containing 20 % ascorbic acid (AsA) as an active pharmaceutical ingredient and 80 % hydroxypropyl methylcellulose, where the tablet is sealed by a special cell. Diffuse reflectance NIR spectra in the 1,000 to 1,600 nm region were measured during the dissolution of the tablet. A unique band at around 1,361 nm of AsA was identified by the second derivative spectra of tablet and used for AsA distribution NIR imaging. Two-dimensional change of AsA concentration of the tablet due to water penetration is clearly shown by using the band-based image at 1,361 nm in NIR spectra obtained with high speed. Moreover, it is significantly enhanced by using the intensity ratio of two bands at 1,361 and 1,354 nm corresponding to AsA and water absorption, respectively, showing the dissolution process. The imaging results suggest that the amount of AsA in the imaged area decreases with increasing water penetration. The proposed NIR imaging approach using the intensity of a specific band or the ratio of two bands combined with the developed portable NIR imaging instrument, is a potentially useful practical way to evaluate the tablet at every moment during dissolution and to monitor the concentration distribution of each drug component in the tablet.


Asunto(s)
Preparaciones Farmacéuticas/química , Espectroscopía Infrarroja Corta/métodos , Comprimidos/química , Solubilidad
14.
Appl Spectrosc ; 67(7): 724-30, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23816123

RESUMEN

Two-dimensional (2D) near-infrared (NIR) and mid-infrared (mid-IR) heterospectral correlation analyses were used to characterize temperature-dependent spectral variations of water and liquid oleic acid (OA), utilizing a dataset obtained with an online NIR/mid-IR dual-region spectrometer. The spectrometer facilitated sequential acquisition of both NIR (10 000-4000 cm(-1)) and mid-IR (5000-1200 cm(-1)) spectra, which compose the spectral dataset required for 2D NIR/mid-IR heterospectral correlation analysis. Both NIR and mid-IR spectra were obtained under the same conditions by using the same sample compartment, more quickly and easily than is possible when using existing spectrometers. Successful 2D NIR/mid-IR correlation analysis was performed with the data collected with this instrument to characterize the temperature dependence of the molecular structures of water and pure liquid OA. Temperature-induced NIR/mid-IR spectral changes for water and OA were analyzed in detail, and band assignments in the NIR and mid-IR regions were elucidated by 2D NIR/mid-IR heterospectral correlation analysis. The results of this study indicate that liquid water consists of two major species, strongly hydrogen-bonded species and weakly hydrogen-bonded species, as well as one minor species. Additionally, OA was found to form an intermolecularly hydrogen-bonded species in which a single hydrogen bond of the dimer was broken; a mid-IR band at 1724 cm(-1) was assigned to this species. Moreover, 2D NIR/mid-IR heterospectral correlation analysis revealed that NIR bands at 4690 and 4644 cm(-1) also arose from intermolecularly hydrogen-bonded species. These results demonstrate that 2D NIR/mid-IR heterospectral correlation analysis is useful not only for NIR band assignments, but also for molecular structure studies. The spectrometer we developed makes this analysis even more accessible.

15.
Rev Sci Instrum ; 84(2): 023104, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23464192

RESUMEN

In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-µm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.


Asunto(s)
Industria Farmacéutica , Equipos y Suministros Eléctricos , Luz , Espectrofotometría Infrarroja/instrumentación , Industria Farmacéutica/instrumentación , Industria Farmacéutica/métodos , Diseño de Equipo , Fibras Ópticas , Silicio , Factores de Tiempo
16.
Anal Sci ; 28(12): 1165-70, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23232236

RESUMEN

A new selection procedure of an informative near-infrared (NIR) region for regression model building is proposed that uses an online NIR/mid-infrared (mid-IR) dual-region spectrometer in conjunction with two-dimensional (2D) NIR/mid-IR heterospectral correlation spectroscopy. In this procedure, both NIR and mid-IR spectra of a liquid sample are acquired sequentially during a reaction process using the NIR/mid-IR dual-region spectrometer; the 2D NIR/mid-IR heterospectral correlation spectrum is subsequently calculated from the obtained spectral data set. From the calculated 2D spectrum, a NIR region is selected that includes bands of high positive correlation intensity with mid-IR bands assigned to the analyte, and used for the construction of a regression model. To evaluate the performance of this procedure, a partial least-squares (PLS) regression model of the ethanol concentration in a fermentation process was constructed. During fermentation, NIR/mid-IR spectra in the 10000 - 1200 cm(-1) region were acquired every 3 min, and a 2D NIR/mid-IR heterospectral correlation spectrum was calculated to investigate the correlation intensity between the NIR and mid-IR bands. NIR regions that include bands at 4343, 4416, 5778, 5904, and 5955 cm(-1), which result from the combinations and overtones of the C-H group of ethanol, were selected for use in the PLS regression models, by taking the correlation intensity of a mid-IR band at 2985 cm(-1) arising from the CH(3) asymmetric stretching vibration mode of ethanol as a reference. The predicted results indicate that the ethanol concentrations calculated from the PLS regression models fit well to those obtained by high-performance liquid chromatography. Thus, it can be concluded that the selection procedure using the NIR/mid-IR dual-region spectrometer combined with 2D NIR/mid-IR heterospectral correlation spectroscopy is a powerful method for the construction of a reliable regression model.


Asunto(s)
Etanol/análisis , Etanol/metabolismo , Fermentación , Rayos Infrarrojos , Análisis de Regresión , Espectrofotometría Infrarroja , Espectroscopía Infrarroja Corta
17.
Appl Spectrosc ; 66(7): 773-81, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22709545

RESUMEN

A near-infrared (NIR) and mid-infrared (mid-IR) dual-region spectrometer having two immersion probes, a transmission probe for NIR, and an attenuated total reflection (ATR) probe for mid-IR has been developed for highly reliable process monitoring and deep process understanding. This spectrometer facilitates sequential acquisition of both NIR (10,000-4000 cm(-1)) and mid-IR (5000-1200 cm(-1)) spectra by switching the light path leading to the probes without the need for probe replacement. The use of a single light source and a single beam splitter enables achievement of a permanent alignment of the optical system and sequential data acquisition. The transmission NIR and ATR mid-IR probes designed and developed in the present study facilitate the acquisition of NIR/mid-IR spectra with optimized absorption intensities in both regions by simply placing the probes into a sample solution. The performance of the developed spectrometer was demonstrated in monitoring the ethanol fermentation process. NIR/mid-IR spectra of the fermentation solution with multiplicative scatter correction (MSC) represent the relative changes in the concentrations of glucose and ethanol in both regions. Principal component analysis (PCA) was performed on the MSC-treated spectra in the regions 6300-5650 cm(-1), 4850-4300 cm(-1), and 3500-2880 cm(-1) to detect the end-point of the fermentation as an example of process monitoring. For all the regions, the score plot of the first principal component (PC) indicates that the fermentation progresses with the fermentation time and stops after 210 minutes and thus the end-point of the fermentation exists at around 210 minutes. The loading plot indicates that all of the first PCs are the relative changes in the concentrations of glucose and ethanol. This result reveals that the same chemical changes are observed in both transmission NIR and ATR mid-IR spectra. Multiple and simultaneous analysis was also performed, and intensity change in light scattering relating the growth of yeasts was monitored by the NIR spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...