Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(3): 3056-3063, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38194274

RESUMEN

Proteins are broadly versatile biochemical materials, whose functionality is tightly related to their folding state. Native folding can be lost to yield misfolded conformations, often leading to formation of protein oligomers, aggregates, and biomolecular phase condensates. The fluorogenic hyaluronan HA-RB, a nonsulfonated glycosaminoglycan with a combination of polyanionic character and of hydrophobic spots due to rhodamine B dyes, binds to early aggregates of the model protein cytoplasmic glyceraldehyde-3-phosphate dehydrogenase 1 from Arabidopsis thaliana (AtGAPC1) since the very onset of the oligomeric phase, making them brightly fluorescent. This initial step of aggregation has, until now, remained elusive with other fluorescence- or scattering-based techniques. The information gathered from nanotracking (via light-sheet fluorescence microscopy) and from FCS in a confocal microscope converges to highlight the ability of HA-RB to bind protein aggregates from the very early steps of aggregation and with high affinity. Altogether, this fluorescence-based approach allows one to monitor and track individual early AtGAPC1 aggregates in the size range from 10 to 100 nm with high time (∼10-2 s) and space (∼250 nm) resolution.


Asunto(s)
Arabidopsis , Ácido Hialurónico , Ácido Hialurónico/metabolismo , Agregado de Proteínas , Nanogeles , Proteínas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas , Arabidopsis/metabolismo , Estrés Oxidativo , Pliegue de Proteína
2.
Chemistry ; 29(69): e202301005, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37677125

RESUMEN

Over the past two decades, the chirality-induced spin selectivity (CISS) effect was reported in several experiments disclosing a unique connection between chirality and electron spin. Recent theoretical works highlighted time-resolved Electron Paramagnetic Resonance (trEPR) as a powerful tool to directly detect the spin polarization resulting from CISS. Here, we report a first attempt to detect CISS at the molecular level by linking the pyrene electron donor to the fullerene acceptor with chiral peptide bridges of different length and electric dipole moment. The dyads are investigated by an array of techniques, including cyclic voltammetry, steady-state and transient optical spectroscopies, and trEPR. Despite the promising energy alignment of the electronic levels, our multi-technique analysis reveals no evidence of electron transfer (ET), highlighting the challenges of spectroscopic detection of CISS. However, the analysis allows the formulation of guidelines for the design of chiral organic model systems suitable to directly probe CISS-polarized ET.

3.
Front Bioeng Biotechnol ; 10: 953555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324885

RESUMEN

In the field of nanomedicine a multitude of nanovectors have been developed for cancer application. In this regard, a less exploited target is represented by connective tissue. Sarcoma lesions encompass a wide range of rare entities of mesenchymal origin affecting connective tissues. The extraordinary diversity and rarity of these mesenchymal tumors is reflected in their classification, grading and management which are still challenging. Although they include more than 70 histologic subtypes, the first line-treatment for advanced and metastatic sarcoma has remained unchanged in the last fifty years, excluding specific histotypes in which targeted therapy has emerged. The role of chemotherapy has not been completely elucidated and the outcomes are still very limited. At the beginning of the century, nano-sized particles clinically approved for other solid lesions were tested in these neoplasms but the results were anecdotal and the clinical benefit was not substantial. Recently, a new nanosystem formulation NBTXR3 for the treatment of sarcoma has landed in a phase 2-3 trial. The preliminary results are encouraging and could open new avenues for research in nanotechnology. This review provides an update on the recent advancements in the field of nanomedicine for sarcoma. In this regard, preclinical evidence especially focusing on the development of smart materials and drug delivery systems will be summarized. Moreover, the sarcoma patient management exploiting nanotechnology products will be summed up. Finally, an overlook on future perspectives will be provided.

4.
Chemistry ; 27(70): 17529-17541, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34519368

RESUMEN

The growing numbers related to plastic pollution are impressive, with ca. 70 % of produced plastic (>350 tonnes/year) being indiscriminately wasted in the environment. The most dangerous forms of plastic pollution for biota and human health are micro- and nano-plastics (MNPs), which are ubiquitous and more bioavailable. Their elimination is extremely difficult, but the first challenge is their detection since existing protocols are unsatisfactory for microplastics and mostly absent for nanoplastics. After a discussion of the state of the art for MNPs detection, we specifically revise the techniques based on photoluminescence that represent very promising solutions for this problem. In this context, Nile Red staining is the most used strategy and we show here its pros and limitations, but we also discuss other more recent approaches, such as the use of fluorogenic probes based on perylene-bisimide and on fluorogenic hyaluronan nanogels, with the added values of biocompatibility and water solubility.


Asunto(s)
Microplásticos , Plásticos , Humanos
5.
Chem Soc Rev ; 50(15): 8414-8427, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34142693

RESUMEN

Luminescence quenching is a process exploited in transversal applications in science and technology and it has been studied for a long time. The luminescence quenching mechanisms are typically distinguished in dynamic (collisional) and static, which can require different quantitative treatments. This is particularly important - and finds broad and interdisciplinary application - when the static quenching is caused by the formation of an adduct between the luminophore - at the ground state - and the quencher. Due to its nature, this case should be treated starting from the well-known law of mass action although, in specific conditions, general equations can be conveniently reduced to simpler ones. A proper application of simplified equations, though, can be tricky, with frequent oversimplifications taking to severe errors in the interpretation of the photophysical data. This tutorial review aims to (i) identify the precise working conditions for the application of the simplified equations of static quenching and to (ii) provide general equations for broadest versatility and applicability. The latter equations can be used even beyond the sole case of pure quenching, i.e., in the cases of partial quenching and even luminescence turn-on. Finally, we illustrate different applications of the equations via a critical discussion of examples in the field of sensing, supramolecular chemistry and nanotechnology.

6.
ACS Appl Mater Interfaces ; 13(27): 31996-32004, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34156238

RESUMEN

Nitroxides are an important class of radical trapping antioxidants whose promising biological activities are connected to their ability to scavenge peroxyl (ROO•) radicals. We have measured the rate constants of the reaction with ROO• (kinh) for a series of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) derivatives as 5.1 × 106, 1.1 × 106, 5.4 × 105, 3.7 × 105, 1.1 × 105, 1.9 × 105, and 5.6 × 104 M-1 s-1 for -H, -OH, -NH2, -COOH, -NHCOCH3, -CONH(CH2)3CH3, and ═O substituents in the 4 position, with a good Marcus relationship between log (kinh) and E° for the R2NO•/R2NO+ couple. Newly synthesized Pluronic-silica nanoparticles (PluS) having nitroxide moieties covalently bound to the silica surface (PluS-NO) through a TEMPO-CONH-R link and coumarin dyes embedded in the silica core, has kinh = 1.5 × 105 M-1 s-1. Each PluS-bound nitroxide displays an inhibition duration nearly double that of a structurally related "free" nitroxide. As each PluS-NO particle bears an average of 30 nitroxide units, this yields an overall ≈60-fold larger inhibition of the PluS-NO nanoantioxidant compared to the molecular analogue. The implications of these results for the development of novel nanoantioxidants based on nitroxide derivatives are discussed, such as the choice of the best linkage group and the importance of the regeneration cycle in determining the duration of inhibition.

7.
Polymers (Basel) ; 13(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069160

RESUMEN

Microplastics (MP) are micrometric plastic particles present in drinking water, food and the environment that constitute an emerging pollutant and pose a menace to human health. Novel methods for the fast detection of these new contaminants are needed. Fluorescence-based detection exploits the use of specific probes to label the MP particles. This method can be environmentally friendly, low-cost, easily scalable but also very sensitive and specific. Here, we present the synthesis and application of a new probe based on perylene-diimide (PDI), which can be prepared in a few minutes by a one-pot reaction using a conventional microwave oven and can be used for the direct detection of MP in water without any further treatment of the sample. The green fluorescence is strongly quenched in water at neutral pH because of the formation dimers. The ability of the probe to label MP was tested for polyvinyl chloride (PVC), polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), poly methyl methacrylate (PMMA) and polytetrafluoroethylene (PTFE). The probe showed considerable selectivity to PVC MP, which presented an intense red emission after staining. Interestingly, the fluorescence of the MP after labeling could be detected, under excitation with a blue diode, with a conventional CMOS color camera. Good selectivity was achieved analyzing the red to green fluorescence intensity ratio. UV-Vis absorption, steady-state and time-resolved fluorescence spectroscopy, fluorescence anisotropy, fluorescence wide-field and confocal laser scanning microscopy allowed elucidating the mechanism of the staining in detail.

8.
Langmuir ; 37(16): 4802-4809, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33851534

RESUMEN

Nanostructured systems constitute versatile carriers with multiple functions engineered in a nanometric space. Yet, such multimodality often requires adapting the chemistry of the nanostructure to the properties of the hosted functional molecules. Here, we show the preparation of core-shell Pluronic-organosilica "PluOS" nanoparticles with the use of a library of organosilane precursors. The precursors are obtained via a fast and quantitative click reaction, starting from cost-effective reagents such as diamines and an isocyanate silane derivative, and they condensate in building blocks characterized by a balance between hydrophobic and H-bond-rich domains. As nanoscopic probes for local polarity, oxygen permeability, and solvating properties, we use, respectively, solvatochromic, phosphorescent, and excimer-forming dyes covalently linked to the organosilica matrix during synthesis. The results obtained here clearly show that the use of these organosilane precursors allows for finely tuning polarity, oxygen permeability, and solvating properties of the resulting organosilica core, expanding the toolbox for precise engineering of the particle properties.

9.
ACS Appl Mater Interfaces ; 13(11): 13872-13882, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33689274

RESUMEN

Semisolid redox flow batteries simultaneously address the need for high energy density and design flexibility. The electrical percolating network and electrochemical stability of the flowable electrodes are key features that are required to fully exploit the chemistry of the semisolid slurries. Superconcentrated electrolytes are getting much attention for their wide electrochemical stability window that can be exploited to design high-voltage batteries. Here, we report on the effect of the ion concentration of superconcentrated electrolytes on the electronic percolating network of carbonaceous slurries. Slurries based on different concentrations of lithium bis(trifluoromethane)sulfonamide in tetraethylene glycol dimethyl ether (0.5, 3, and 5 mol/kg) at different content of Pureblack carbon (from 2 up to 12 wt %) have been investigated. The study was carried out by coupling electrochemical impedance spectroscopy (EIS), optical fluorescence microscopy, and rheological measurements. A model that describes the complexity and heterogeneity of the semisolid fluids by multiple conductive branches is also proposed. For the first time, to the best of our knowledge, we demonstrate that besides their recognized high electrochemical stability, superconcentrated electrolytes enable more stable and electronically conductive slurry. Indeed, the high ionic strength of the superconcentrated solution shields interparticle interactions and enables better carbon dispersion and connections.

10.
Angew Chem Int Ed Engl ; 59(49): 21858-21863, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33000888

RESUMEN

The combination of highly sensitive techniques such as electrochemiluminescence (ECL) with nanotechnology sparked new analytical applications, in particular for immunoassay-based detection systems. In this context, nanomaterials, particularly dye-doped silica nanoparticles (DDSNPs) are of high interest, since they can offer several advantages in terms of sensitivity and performance. In this work we synthesized two sets of monodispersed and biotinylated [Ru(bpy)3 ]2+ -doped silica nanoparticles, named bio-Triton@RuNP and bio-Igepal@RuNP, obtained following the reverse microemulsion method using two different types of nonionic surfactants. Controlling the synthetic procedures, we were able to obtain nanoparticles (NPs) offering highly intense signal, using tri-n-propylamine (TPrA) as coreactant, with bio-Triton@RuNps being more efficient than bio-Igepal@RuNP.


Asunto(s)
Colorantes/química , Inmunoensayo , Nanopartículas/química , Compuestos Organometálicos/química , Dióxido de Silicio/química , Colorantes/síntesis química , Técnicas Electroquímicas , Humanos , Mediciones Luminiscentes , Estructura Molecular , Nanotecnología , Tamaño de la Partícula , Propiedades de Superficie
11.
Front Chem ; 8: 71, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32175305

RESUMEN

The detection of the Cerenkov radiation (CR) is an emerging preclinical imaging technique which allows monitoring the in vivo distribution of radionuclides. Among its possible advantages, the most interesting is the simplicity and cost of the required instrumentation compared, e.g., to that required for PET scans. On the other hand, one of its main drawbacks is related to the fact that CR, presenting the most intense component in the UV-vis region, has a very low penetration in biological tissues. To address this issue, we present here multifluorophoric silica nanoparticles properly designed to efficiently absorb the CR radiation and to have a quite high fluorescence quantum yield (0.12) at 826 nm. Thanks to a highly efficient series of energy transfer processes, each nanoparticle can convert part of the CR into NIR light, increasing its detection even under 1.0-cm thickness of muscle.

12.
ACS Appl Mater Interfaces ; 12(6): 6806-6813, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31995357

RESUMEN

Hybrid nanomaterials are a subject of extensive research in nanomedicine, and their clinical application is reasonably envisaged in the near future. However, the fate of nanomaterials in biological environments poses serious limitations to their application; therefore, schemes to monitor them and gain control on their toxicity could be of great help for the development of the field. Here, we propose a probe for PEGylated nanosurfaces based on hyaluronic acid (HA) functionalized with rhodamine B (RB). We show that the high-affinity interaction of this fluorogenic hyaluronan (HA-RB) with nanoparticles exposing PEGylated surfaces results in their sensing, labeling for super-resolution imaging, and synergistic cellular internalization. HA-RB forms nanogels that interact with high affinity-down to the picomolar range-with silica nanoparticles, selectively when their surface is covered by a soft and amphiphilic layer. This surface-driven interaction triggers the enhancement of the luminescence intensity of the dyes, otherwise self-quenched in HA-RB nanogels. The sensitive labeling of specific nanosurfaces also allowed us to obtain their super-resolution imaging via binding-activated localization microscopy (BALM). Finally, we show how this high-affinity interaction activates a synergistic cellular uptake of silica nanoparticles and HA-RB nanogels, followed by a differential fate of the two partner nanomaterials inside cells.


Asunto(s)
Ácido Hialurónico/química , Nanoestructuras/química , Polietilenglicoles/química , Membrana Celular/química , Membrana Celular/metabolismo , Fluorescencia , Células HeLa , Humanos , Ácido Hialurónico/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Rodaminas/química , Rodaminas/metabolismo , Dióxido de Silicio/química
13.
Proc Natl Acad Sci U S A ; 116(51): 26057-26065, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31772010

RESUMEN

Protein aggregation is a complex physiological process, primarily determined by stress-related factors revealing the hidden aggregation propensity of proteins that otherwise are fully soluble. Here we report a mechanism by which glycolytic glyceraldehyde-3-phosphate dehydrogenase of Arabidopsis thaliana (AtGAPC1) is primed to form insoluble aggregates by the glutathionylation of its catalytic cysteine (Cys149). Following a lag phase, glutathionylated AtGAPC1 initiates a self-aggregation process resulting in the formation of branched chains of globular particles made of partially misfolded and totally inactive proteins. GSH molecules within AtGAPC1 active sites are suggested to provide the initial destabilizing signal. The following removal of glutathione by the formation of an intramolecular disulfide bond between Cys149 and Cys153 reinforces the aggregation process. Physiological reductases, thioredoxins and glutaredoxins, could not dissolve AtGAPC1 aggregates but could efficiently contrast their growth. Besides acting as a protective mechanism against overoxidation, S-glutathionylation of AtGAPC1 triggers an unexpected aggregation pathway with completely different and still unexplored physiological implications.


Asunto(s)
Arabidopsis/metabolismo , Glutatión/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Anotación de Secuencia Molecular , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico , Glutarredoxinas/metabolismo , Glutatión/química , Disulfuro de Glutatión/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Cinética , Simulación de Dinámica Molecular , Oxidación-Reducción , Pliegue de Proteína , Solubilidad , Tiorredoxinas/metabolismo
14.
ACS Omega ; 4(9): 13962-13971, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31497714

RESUMEN

Silica nanostructures are widely investigated for theranostic applications since relatively mild and easy synthetic methods allow the fabrication of multicompartment nanoparticles (NPs) and fine modulation of their properties. Here, we report the optimization of a synthetic strategy leading to brightly fluorescent silica NPs with a high loading ability, up to 45 molecules per NP, of Sorafenib, a small molecule acting as an antiangiogenic drug. We demonstrate that these NPs can efficiently release the drug and they are able to inhibit endothelial cell proliferation and migration and network formation. Their lyophilization can endow them with long shelf stability, whereas, once in solution, they show a much slower release compared to analogous micellar systems. Interestingly, Sorafenib released from Pluronic silica NPs completely prevented endothelial cell responses and postreceptor mitogen-activated protein kinase signaling ignited by vascular endothelial growth factor, one of the major players of tumor angiogenesis. Our results indicate that these theranostic systems represent a promising structure for anticancer applications since NPs alone have no cytotoxic effect on cultured endothelial cells, a cell type to which drugs and exogenous material are always in contact once delivered.

15.
Photochem Photobiol Sci ; 18(9): 2142-2149, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31011734

RESUMEN

Silica nanoparticles (NPs) are versatile nanomaterials, which are safe with respect to biomedical applications, and therefore are highly investigated. The advantages of NPs include their ease of preparation, inexpensive starting materials and the possibility of functionalization or loading with various doping agents. However, the solubility of the doping agent(s) imposes constraints on the choice of the reaction system and hence limits the range of molecules that can be included in the interior of NPs. To overcome this problem, herein, we improved the current state of the art synthetic strategy based on Pluronic F127 by enabling the synthesis in the presence of large amounts of organic solvents. The new method enables the preparation of nanoparticles doped with large amounts of water-insoluble doping agents. To illustrate the applicability of the technology, we successfully incorporated a range of phosphorescent metalloporphyrins into the interior of NPs. The resulting phosphorescent nanoparticles may exhibit potential for biological oxygen sensing.

16.
Sci Rep ; 8(1): 17095, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459427

RESUMEN

Understanding polarity gradients inside nanomaterials is essential to capture their potential as nanoreactors, catalysts or in drug delivery applications. We propose here a method to obtain detailed, quantitative information on heterogeneous polarity in multicompartment nanostructures. The method is based on a 2-steps procedure, (i) deconvolution of complex emission spectra of two solvatochromic probes followed by (ii) spectrally resolved analysis of FRET between the same solvatochromic dyes. While the first step yields a list of polarities probed in the nanomaterial suspension, the second step correlates the polarities in space. Colocalization of polarities falling within few nanometer radius is obtained via FRET, a process called here nanopolarity mapping. Here, Prodan and Nile Red are tested to map the polarity of a water-dispersable, multicompartment nanostructure, named PluS nanoparticle (NPs). PluS NPs are uniform core-shell nanoparticles with silica cores (diameter ~10 nm) and Pluronic F127 shell (thickness ~7 nm). The probes report on a wide range of nanopolarities among which the dyes efficiently exchange energy via FRET, demonstrating the coexistence of a rich variety of environments within nanometer distance. Their use as a FRET couple highlights the proximity of strongly hydrophobic sites and hydrated layers, and quantitatively accounts for the emission component related to external water, which remains unaffected by FRET processes. This method is general and applicable to map nanopolarity in a large variety of nanomaterials.

17.
Chemistry ; 24(63): 16743-16746, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30256465

RESUMEN

A nanosensor with dual-mode fluorescence response to pH and an encoded identification signal, was developed by exploiting excitation energy transfer and tailored control of molecular organization in core-shell nanoparticles. Multiple signals were acquired in a simple single-excitation dual-emission channels set-up.

18.
Adv Mater ; 30(39): e1802813, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30133005

RESUMEN

Mechanochromic polymeric systems are intensively investigated for real-time stress detection applications. However, an effective stress-sensing material must respond to low deformation with a detectable color change that should be quickly reversible upon force unloading. In this work, mechanochromic nanofibers made by electrospinning are used to produce mechanochromic nanofiber/poly(dimethylsiloxane) (PDMS) composites with isotropic and anisoptropic response. Due to chain alignment of spiropyran copolymer chains within the nanofibers, only very small strains are required to yield a mechanochromic response. Composites with aligned and isotropic nanofibers show anisotropic and isotropic mechanochromic behavior, respectively. Due to the special substitution pattern of spiropyran in the copolymer, the mechanochromic response of these nanofiber/PDMS composites shows fast reversibility upon force unloading. The outstanding benefit of using highly sensitive mechanochromic nanofibers as filler in composite materials allows the detection of directional stress and strain, and it is a step forward in the development of smart, mechanically responsive materials.

19.
Chemistry ; 24(33): 8438-8446, 2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-29637630

RESUMEN

Silicon complexes of corrole were obtained for the first time by reaction of the free-base corrole with hexachlorodisilane. The peripheral substituents of corrole strongly influence the nature of the reaction products: ß-octaalkyl corrole was mainly isolated as the µ-oxo dimer, while a hydroxo complex was obtained in the case of 5,10,15-tris-(pentafluorophenyl)corrole. In the case of meso-tritolyl corrole, a mixture of monomer/µ-oxo dimer was obtained. The silicon corrole complexes are more stable toward hydrolysis than the corresponding porphyrin derivatives and are endowed with brilliant luminescence properties. The high affinity of silicon for fluoride ion allowed investigation of the ability of an Si corrole to serve as a sensor for F- detection. The strong color variation due to the interaction with the halide ion makes the Si corrole an interesting material for the naked-eye detection of inorganic fluoride.

20.
Methods Appl Fluoresc ; 6(2): 022002, 2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-28952461

RESUMEN

The development of nanostructures devoted to in vivo imaging and theranostic applications is one of the frontier fields of research worldwide. In this context, silica nanoparticles (SiO2-NPs) offer unquestionable positive properties: silica is intrinsically non-toxic, several versatile and accessible synthetic methods are available and many variations are possible, both in terms of porosity and functionalization for delivery and targeting purposes, respectively. Moreover, the accumulation of several dyes within a single nanostructure offers remarkable possibilities to produce very bright and photostable luminescent nanosystems. Advancements in imaging technology, bioassay, fluorescent molecular probes have boosted the efforts to develop dye doped fluorescent SiO2-NPs, but despite this, only a quite limited set of systems are applicable in vivo. Herein we discuss selected examples that appeared in the literature between 2013-17, with imaging capabilities in vivo and characterized by a significant near infrared (NIR) fluorescence emission. We present here very promising strategies to develop SiO2-NPs for diagnostic and therapeutic applications-some of which are already in clinical trials-and the possibility to develop bio-erodable SiO2-NPs. We are convinced that all these findings will be the basis for the spread of SiO2-NPs into clinical use in the near future.


Asunto(s)
Colorantes Fluorescentes/química , Nanopartículas/química , Dióxido de Silicio/química , Animales , Portadores de Fármacos/química , Emulsiones/química , Humanos , Micelas , Espectroscopía Infrarroja Corta , Nanomedicina Teranóstica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...