Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39195412

RESUMEN

Herein, a novel sulfur-doped carbon material has been synthesized via a facile and sustainable single-step pyrolysis method using lignin-sulfonate (LS), a by-product of the sulfite pulping process, as a novel carbon precursor and zinc chloride as a chemical activator. The sulfur doping process had a remarkable impact on the LS-sulfur carbon structure. Moreover, it was found that sulfur doping also had an important impact on sodium diclofenac removal from aqueous solutions due to the introduction of S-functionalities on the carbon material's surface. The doping process effectively increased the carbon specific surface area (SSA), i.e., 1758 m2 g-1 for the sulfur-doped and 753 m2 g-1 for the non-doped carbon. The sulfur-doped carbon exhibited more sulfur states/functionalities than the non-doped, highlighting the successful chemical modification of the material. As a result, the adsorptive performance of the sulfur-doped carbon was remarkably improved. Diclofenac adsorption experiments indicated that the kinetics was better described by the Avrami fractional order model, while the equilibrium studies indicated that the Liu model gave the best fit. The kinetics was much faster for the sulfur-doped carbon, and the maximum adsorption capacity was 301.6 mg g-1 for non-doped and 473.8 mg g-1 for the sulfur-doped carbon. The overall adsorption seems to be a contribution of multiple mechanisms, such as pore filling and electrostatic interaction. When tested to treat lab-made effluents, the samples presented excellent performance.

2.
Heliyon ; 10(12): e33058, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988580

RESUMEN

Fatty acids are of particular interest for industrial applications of microalgal feedstock, as these have a wide array of different uses such as pharmaceuticals and biofuels. Fourier transform infrared (FTIR) spectroscopic techniques used in combination with multivariate prediction modeling are showing great potential as analytical methods for characterizing microalgal biomass. The present study investigated the use of diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) coupled with partial least squares regression (PLSR) to estimate fatty acid contents in microalgae. A prediction model for microalgal samples was developed using algae cultivated in both Bold's basal medium (BBM) and sterilized municipal wastewater under axenic conditions, as well as algal polycultures cultivated in open raceway ponds using untreated municipal wastewater influent. This universal prediction model was able to accurately predict microalgal samples of either type with high accuracy (RMSEP = 1.38, relative error = 0.14) and reliability (R2 > 0.92). DRIFTS in combination with PLSR is a rapid method for determining fatty acid contents in a wide variety of different microalgal samples with high accuracy. The use of spectral characterization techniques offers a reliable and environmentally friendly alternative to traditional labor intensive techniques based on the use of toxic chemicals.

3.
Int J Biol Macromol ; 254(Pt 3): 127870, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967607

RESUMEN

Brown seaweeds contain a variety of saccharides which have potential industrial uses. The most abundant polysaccharide in brown seaweed is typically alginate, consisting of mannuronic (M) and guluronic acid (G). The ratio of these residues fundamentally determines the physicochemical properties of alginate. In the present study, gas chromatography/mass spectrometry (GC/MS) was used to give a detailed breakdown of the monosaccharide species in North Atlantic brown seaweeds. The anthrone method was used for determination of crystalline cellulose. The experimental data was used to calibrate multivariate prediction models for estimation of total carbohydrates, crystalline cellulose, total alginate and alginate M/G ratio directly in dried, brown seaweed using three types of infrared spectroscopy, using relative error (RE) as a measure of predictive accuracy. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) performed well for the estimation of total alginate (RE = 0.12, R2 = 0.82), and attenuated total reflectance (ATR) showed good prediction of M/G ratio (RE = 0.14, R2 = 0.86). Both DRIFTS, ATR and near infrared (NIR) were unable to predict crystalline cellulose and only DRIFTS performed better in determining total carbohydrates. Multivariate spectral analysis is a promising method for easy and rapid characterization of alginate and M/G ratio in seaweed.


Asunto(s)
Algas Marinas , Algas Marinas/química , Espectrofotometría Infrarroja , Carbohidratos , Cromatografía de Gases y Espectrometría de Masas , Alginatos/química , Celulosa , Espectrometría de Masas , Espectroscopía Infrarroja por Transformada de Fourier/métodos
4.
Sci Rep ; 13(1): 8562, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37236976

RESUMEN

Green microalgae is a possible feedstock for the production of biofuels, chemicals, food/feed, and medical products. Large-scale microalgae production requires large quantities of water and nutrients, directing the attention to wastewater as a cultivation medium. Wastewater-cultivated microalgae could via wet thermochemical conversion be valorised into products for e.g., water treatment. In this study, hydrothermal carbonization was used to process microalgae polycultures grown in municipal wastewater. The objective was to perform a systematic examination of how carbonization temperature, residence time, and initial pH affected solid yield, composition, and properties. Carbonization temperature, time and initial pH all had statistically significant effects on hydrochar properties, with temperature having the most pronounced effect; the surface area increased from 8.5 to 43.6 m2 g-1 as temperature was increased from 180 to 260 °C. However, hydrochars produced at low temperature and initially neutral pH generally had the highest capacity for methylene blue adsorption. DRIFTS analysis of the hydrochar revealed that the pH conditions changed the functional group composition, implying that adsorption was electrostatic interactions driven. This study concludes that un-activated hydrochars from wastewater grown microalgae produced at relatively low hydrothermal carbonization temperatures adsorb methylene blue, despite having low surface area.


Asunto(s)
Microalgas , Aguas Residuales , Azul de Metileno , Porosidad , Alimentos , Temperatura , Carbono
5.
Sci Rep ; 13(1): 3509, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864186

RESUMEN

Microalgal biomass may have biostimulating effects on plants and seeds due to its phytohormonal content, and harnessing this biostimulating effect could contribute to sustainable agriculture. Two Nordic strains of freshwater microalgae species Chlorella vulgaris and Scenedesmus obliquus were each cultivated in a photobioreactor receiving untreated municipal wastewater. The algal biomass and the supernatant after algal cultivation were tested on tomato and barley seeds for biostimulating effects. Intact algal cells, broken cells, or harvest supernatant were applied to the seeds, and germination time, percentage and germination index were evaluated. Seeds treated with C. vulgaris, in particular intact cells or supernatant, had up to 25 percentage units higher germination percentage after 2 days and an overall significantly faster germination time (germinated on average between 0.5 and 1 day sooner) than seeds treated with S. obliquus or the control (water). The germination index was higher in C. vulgaris treatments than in the control for both tomato and barley, and this was observed for both broken and intact cells as well as supernatant. The Nordic strain of C. vulgaris cultivated in municipal wastewater thus shows potential for use as biostimulant in agriculture, adding novel economic and sustainability benefits.


Asunto(s)
Chlorella vulgaris , Hordeum , Microalgas , Solanum lycopersicum , Aguas Residuales , Semillas
6.
Food Chem ; 404(Pt B): 134700, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36279781

RESUMEN

Seaweed is considered a potentially sustainable source of protein for human consumption, and rapid, accurate methods for determining seaweed protein contents are needed. Seaweeds contain substances which interfere with common protein estimation methods however. The present study compares the Lowry and BCA protein assays and protein determination by N-ratios to more novel spectroscopic methods. Linear regression of the height or the integrated area under the Amide II band of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to predict seaweed protein with good prediction performance. Partial least squares regression (PLSR) was performed on both DRIFTS and near-infrared (NIR) spectra, with even higher prediction accuracy. Spectroscopy performed similar to or better than the calculated N-ratio of 4.14 for protein prediction. These spectral prediction methods require minimal sample preparation and chemical use, and are easy to perform, making them environmentally sustainable and economically viable for rapid estimation of seaweed protein.


Asunto(s)
Algas Marinas , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectroscopía Infrarroja Corta/métodos , Análisis de los Mínimos Cuadrados , Proteínas
7.
Chemosphere ; 313: 137344, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36457266

RESUMEN

The production potential of a locally isolated Chlorella vulgaris strain and a local green-algae consortium, used in municipal wastewater treatment combined with CO2 sequestration from flue gases, was evaluated for the first time by comparing the elemental and biochemical composition and heating value of the biomass produced. The microalgae were grown in outdoor pilot-scale ponds under subarctic summer conditions. The impact of cultivation in a greenhouse climate was also tested for the green-algae consortium; additionally, the variation in species composition over time in the three ponds was investigated. Our results showed that the biomass produced in the consortium/outdoor pond had the greatest potential for bioenergy production because both its carbohydrates and lipids contents were significantly higher than the biomasses from the consortium/greenhouse and C. vulgaris/outdoor ponds. Although greenhouse conditions significantly increased the consortium biomass's monounsaturated fatty acid content, which is ideal for biodiesel production, an undesirable increase in ash and chemical elements, as well as a reduction in heating value, were also observed. Thus, the placement of the pond inside a greenhouse did not improve the production potential of the green-algae consortium biomass in the current study infrastructure and climate conditions.


Asunto(s)
Chlorella vulgaris , Chlorophyta , Microalgas , Aguas Residuales , Gases/química , Dióxido de Carbono , Lípidos , Biomasa , Biocombustibles , Estanques
8.
Bioresour Technol ; 370: 128503, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36535615

RESUMEN

This study presented a novel methodology to predict microalgae chlorophyll content from colour models using linear regression and artificial neural network. The analysis was performed using SPSS software. Type of extractant solvents and image indexes were used as the input data for the artificial neural network calculation. The findings revealed that the regression model was highly significant, with high R2 of 0.58 and RSME of 3.16, making it a useful tool for predicting the chlorophyll concentration. Simultaneously, artificial neural network model with R2 of 0.66 and low RMSE of 2.36 proved to be more accurate than regression model. The model which fitted to the experimental data indicated that acetone was a suitable extraction solvent. In comparison to the cyan-magenta-yellow-black model in image analysis, the red-greenblue model offered a better correlation. In short, the estimation of chlorophyll concentration using prediction models are rapid, more efficient, and less expensive.


Asunto(s)
Clorofila , Microalgas , Redes Neurales de la Computación , Modelos Lineales
9.
Environ Technol ; : 1-12, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536589

RESUMEN

Overgrowth of microalgae will result in harmful algae blooms that can affect the aquatic ecosystem and human health. Therefore, the quantitation of chlorophyll pigments can be used as an indicator of algae bloom. However, it is difficult to monitor the geographical and temporal distribution of chlorophyll in the aquatic environment. Accordingly, an innovative and inexpensive method based on the red-green-blue (RGB) image analysis was utilized in this study to estimate the microalgae chlorophyll content. The digital images were acquired using a smartphone camera. The colour index was then evaluated using software and associated with chlorophyll concentration significantly. A regression model, using RGB colour components as independent variables to estimate chlorophyll concentration, was developed and validated. The Green in the RGB index was the most promising way to estimate chlorophyll concentration in microalgae. The result showed that acetone was the best extractant solvent with a high R-squared value among the four extractant solvents. Next, the isolation of useful biomolecules, such as proteins, fatty acids, polysaccharides and antioxidants from the microalgae, has been recognized as an alternative to regulating algae bloom. Microalgae are shown to produce bioactive compounds with a variety of biological activities that can be applied in various industries. This study evaluates the biochemical composition of mixed microalgae species, Desmodesmus sp. and Scenedesmus sp. using the liquid triphasic partitioning (TPP) system. The findings from analytical assays revealed that the biomass consisted of varied concentrations of carbohydrates, protein, and lipids. Phenolic compounds and antioxidant activity were at 60.22 mg/L and 90.69%, respectively.

10.
Physiol Plant ; 173(2): 536-542, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33779990

RESUMEN

Harvesting microalgae from liquid culture is a difficult issue to solve and is most commonly done through settling. However, settling is a slow process on its own and generally needs to be induced chemically or by introducing stress to the culture. Polymeric, cationic substances, such as cationised starch and chitosan, are often used for flocculation and settling. These large, positively charged molecules form large clusters with suspended particles in the liquid medium. In the present study, three natural organic flocculants (cationic starch, chitosan and acacia tannin S5T) were tested to harvest microalgal cultures grown in wastewater. Two microalgal species, one strain of Chlorella vulgaris and one strain of Scenedesmus obliquus, were cultured in municipal wastewater for different lengths of time, and settled using either cationic starch, chitosan or acacia tannin S5T. Results indicated that S5T worked with approximately the same efficiency in the two assayed species, although it requires a relatively high dosage to function (about 300 mg L-1 ), while the other two flocculants varied from species to species.


Asunto(s)
Chlorella vulgaris , Microalgas , Biomasa , Floculación , Aguas Residuales
11.
Chemosphere ; 271: 129763, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33736225

RESUMEN

Active pharmaceutical ingredients (APIs) are vital to human health and welfare, but following therapeutic use, they may pose a potential ecological risk if discharged into the environment. Today's conventional municipal wastewater treatment plants are not designed to remove APIs specifically, and various techniques, preferably cost-effective and environmentally friendly, are being developed and evaluated. Microalgae-based treatment of wastewater is a sustainable and low-cost approach to remove nutrients and emerging contaminants. In this study, a North Sweden high-rate algal pond (HRAP) using municipal untreated wastewater as medium, was investigated in terms of API distribution and fate. Three six-day batches were prepared during 18 days and a total of 36 APIs were quantified within the HRAP of which 14 were removed from the aqueous phase above 50% and seven removed above 90% of their initial concentrations. Twelve APIs of a hydrophobic nature were mostly associated with the algal biomass that was harvested at the end of each batch. HRAPs treatment successfully removed 69% of studied APIs (25 of 36 studied) in six day time. The distribution of various APIs between the aqueous phase and biomass suggested that several removal mechanisms may occur, such as hydrophobicity driven removal, passive biosorption and active bioaccumulation.


Asunto(s)
Microalgas , Preparaciones Farmacéuticas , Biomasa , Humanos , Estanques , Suecia , Eliminación de Residuos Líquidos , Aguas Residuales
12.
Chemosphere ; 276: 130122, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33690042

RESUMEN

Microalgal-based wastewater treatment and CO2 sequestration from flue gases with subsequent biomass production represent a low-cost, eco-friendly, and effective procedure of removing nutrients and other pollutants from wastewater and assists in the decrease of greenhouse gas emissions. Thus, it supports a circular economy model. This is based on the ability of microalgae to utilise inorganic nutrients, mainly nitrogen and phosphorous, as well as organic and inorganic carbon, for their growth, and simultaneously reduce these substances in the water. However, the production of microalgae biomass under outdoor cultivation is dependent on several abiotic and biotic factors, which impact its profitability and sustainability. Thus, this study's goal was to evaluate the factors affecting the production of microalgae biomass on pilot-scale open raceway ponds under Northern Sweden's summer conditions with the help of a mathematical model. For this purpose, a microalgae consortium and a monoculture of Chlorella vulgaris were used to inoculate outdoor open raceway ponds. In line with the literature, higher biomass concentrations and nutrient removals were observed in ponds inoculated with the microalgae consortium. Our model, based on Droop's concept of macronutrient quotas inside the cell, corresponded well to the experimental data and, thus, can successfully be applied to predict biomass production, nitrogen uptake and storage, and dissolved oxygen production in microalgae consortia.


Asunto(s)
Chlorella vulgaris , Microalgas , Biomasa , Nitrógeno , Oxígeno , Estanques , Suecia , Aguas Residuales/análisis
14.
Food Chem ; 341(Pt 1): 127999, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33099268

RESUMEN

The increasing use of seaweeds in European cuisine led to cultivation initiatives funded by the European Union. Ulva lactuca, commonly known as sea lettuce, is a fast growing seaweed in the North Atlantic that chefs are bringing into the local cuisine. Here, different strains of Arctic U. lactuca were mass-cultivated under controlled conditions for up to 10 months. We quantified various chemical constituents associated with both health benefits (carbohydrates, protein, fatty acids, minerals) and health risks (heavy metals). Chemical analyses showed that long-term cultivation provided biomass of consistently high food quality and nutritional value. Concentrations of macroelements (C, N, P, Ca, Na, K, Mg) and micronutrients (Fe, Zn, Co, Mn, I) were sufficient to contribute to daily dietary mineral intake. Heavy metals (As, Cd, Hg and Pb) were found at low levels to pose health risk. The nutritional value of Ulva in terms of carbohydrates, protein and fatty acids is comparable to some selected fruits, vegetables, nuts and grains.


Asunto(s)
Valor Nutritivo , Algas Marinas/química , Ulva/química , Ulva/crecimiento & desarrollo , Acuicultura , Carbohidratos/análisis , Contaminantes Ambientales/análisis , Ácidos Grasos/análisis , Contaminación de Alimentos , Humanos , Metales Pesados/análisis , Minerales/análisis , Proteínas de Vegetales Comestibles/análisis , Medición de Riesgo , Algas Marinas/crecimiento & desarrollo
15.
Molecules ; 25(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365946

RESUMEN

Rapid rises in atmospheric CO2 levels derived from fossil fuel combustion are imposing urgent needs for renewable substitutes. One environmentally friendly alternative is biodiesel produced from suitable microalgal fatty acids. Algal strains normally grow photoautotrophically, but this is problematic in Northern areas because of the light limitations for much of the year. Mixotrophic and particularly heterotrophic strains could be valuable, especially if they can be cultivated in municipal wastewater with contents of nutrients such as nitrogen and phosphorous that should be reduced before release into receiving water. Thus, the aim of this study was to screen for microalgal strains suitable for heterotrophic cultivation with a cheap carbon source (glycerol) for biodiesel production in Nordic, and other high-latitude, countries. One of the examined strains, a Desmodesmus sp. strain designated 2-6, accumulated biomass at similar rates in heterotrophic conditions with 40 mM glycerol as in autotrophic conditions. Furthermore, in heterotrophic conditions it produced more fatty acids, and ca. 50% more C18:1 fatty acids, as well as showing a significant decrease in C18:3 fatty acids, all of which are highly desirable features for biodiesel production.


Asunto(s)
Ésteres/metabolismo , Ácidos Grasos/metabolismo , Procesos Heterotróficos , Microalgas/metabolismo , Procesos Autotróficos , Biomasa , Lípidos/biosíntesis , Metilación , Microalgas/crecimiento & desarrollo , Espectroscopía Infrarroja por Transformada de Fourier
16.
Bioresour Technol ; 257: 121-128, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29494839

RESUMEN

A systematic qualitative and quantitative analysis of fatty acid methyl esters (FAMEs) is crucial for microalgae species selection for biodiesel production. The aim of this study is to identify the best method to assess microalgae FAMEs composition and content. A single-step method, was tested with and without purification steps-that is, separation of lipid classes by thin-layer chromatography (TLC) or solid-phase extraction (SPE). The efficiency of a direct transesterification method was also evaluated. Additionally, the yield of the FAMEs and the profiles of the microalgae samples with different pretreatments (boiled in isopropanol, freezing, oven-dried and freeze-dried) were compared. The application of a purification step after lipid extraction proved to be essential for an accurate FAMEs characterisation. The purification methods, which included TLC and SPE, provided superior results compared to not purifying the samples. Freeze-dried microalgae produced the lowest FAMEs yield. However, FAMEs profiles were generally equivalent among the pretreatments.


Asunto(s)
Biocombustibles , Ésteres , Microalgas , Esterificación , Ácidos Grasos
17.
J Appl Phycol ; 29(1): 255-262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28344390

RESUMEN

The purpose of this study was to investigate whether pharmaceutical pollutants in urban wastewater can be reduced during algal cultivation. A mixed population of wild freshwater green algal species was grown on urban wastewater influent in a 650 L photobioreactor under natural light and with the addition of flue gases. Removal efficiencies were very high (>90 %), moderate (50-90 %), low (10-50 %), and very low or non-quantifiable (<10 %) for 9, 14, 11, and 18 pharmaceuticals, respectively, over a 7-day period. High reduction was found in the following pharmaceuticals: the beta-blockers atenolol, bispropol, and metoprolol; the antibiotic clarithromycine; the antidepressant bupropion; the muscle relaxant atracurium; hypertension drugs diltiazem and terbutaline used to relive the symptoms of asthma. Regression analysis did not detect any relationship between the reduction in pharmaceutical contents and light intensity reaching the water surface of the algal culture. However, the reduction was positively correlated with light intensity inside the culture and stronger when data collected during the night were excluded. Algae cultivation can remove partially or totally pharmaceutical pollutants from urban wastewater, and this opens up new possibilities for treating urban wastewater.

18.
Bioresour Technol ; 171: 203-10, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25203227

RESUMEN

In this study two wet microalgae cultures and one dried microalgae culture were co-digested in different proportions with sewage sludge in mesophilic and thermophilic conditions. The aim was to evaluate if the co-digestion could lead to an increased efficiency of methane production compared to digestion of sewage sludge alone. The results showed that co-digestion with both wet and dried microalgae, in certain proportions, increased the biochemical methane potential (BMP) compared with digestion of sewage sludge alone in mesophilic conditions. The BMP was significantly higher than the calculated BMP in many of the mixtures. This synergetic effect was statistically significant in a mixture containing 63% (w/w VS based) undigested sewage sludge and 37% (w/w VS based) wet algae slurry, which produced 23% more methane than observed with undigested sewage sludge alone. The trend was that thermophilic co-digestion of microalgae and undigested sewage sludge did not give the same synergy.


Asunto(s)
Biocombustibles , Lagos/microbiología , Metano/biosíntesis , Microalgas/metabolismo , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Anaerobiosis , Suecia , Temperatura
19.
Bioresour Technol ; 169: 27-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25016463

RESUMEN

The aim of the study was to grow microalgae on mixed municipal and industrial wastewater to simultaneously treat the wastewater and produce biomass and lipids. All algal strains grew in all wastewater mixtures; however, Selenastrum minutum had the highest biomass and lipids yields, up to 37% of the dry matter. Nitrogen and phosphorus removal were high and followed a similar trend in all three strains. Ammonium was reduced from 96% to 99%; this reduction was due to algal growth and not to stripping to the atmosphere, as confirmed by the amount of nitrogen in the dry algal biomass. Phosphate was reduced from 91% to 99%. In all strains used the lipid content was negatively correlated to the nitrogen concentration in the algal biomass. Mixtures of pulp and paper wastewater with municipal and dairy wastewater have great potential to grow algae for biomass and lipid production together with effective wastewater treatment.


Asunto(s)
Biomasa , Industria Lechera , Gases/farmacología , Lípidos/biosíntesis , Microalgas/metabolismo , Papel , Aguas Residuales/microbiología , Biodegradación Ambiental/efectos de los fármacos , Análisis de la Demanda Biológica de Oxígeno , Concentración de Iones de Hidrógeno , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...