Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0303273, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781236

RESUMEN

Lithified layers of complex microbial mats known as microbialites are ubiquitous in the fossil record, and modern forms are increasingly identified globally. A key challenge to developing an understanding of microbialite formation and environmental role is how to investigate complex and diverse communities in situ. We selected living, layered microbialites (stromatolites) in a peritidal environment near Schoenmakerskop, Eastern Cape, South Africa to conduct a spatial survey mapping the composition and small molecule production of the microbial communities from environmental samples. Substrate core samples were collected from nine sampling stations ranging from the upper point of the freshwater inflow to the lower marine interface where tidal overtopping takes place. Substrate cores provided material for parallel analyses of microbial community diversity by 16S rRNA gene amplicon sequencing and metabolomics using LC-MS2. Species and metabolite diversities were correlated, and prominent specialized metabolites were targeted for preliminary characterization. A new series of cyclic hexadepsipeptides, named ibhayipeptolides, was most abundant in substrate cores of submerged microbialites. These results demonstrate the detection and identification of metabolites from mass-limited environmental samples and contribute knowledge about microbialite chemistry and biology, which facilitates future targeted studies of specialized metabolite function and biosynthesis.


Asunto(s)
Metabolómica , Metabolómica/métodos , Sudáfrica , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , Depsipéptidos/biosíntesis , Depsipéptidos/química , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
2.
Chemosphere ; 355: 141782, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548083

RESUMEN

While anthropogenic pollution is a major threat to aquatic ecosystem health, our knowledge of the presence of xenobiotics in coastal Dissolved Organic Matter (DOM) is still relatively poor. This is especially true for water bodies in the Global South with limited information gained mostly from targeted studies that rely on comparison with authentic standards. In recent years, non-targeted tandem mass spectrometry has emerged as a powerful tool to collectively detect and identify pollutants and biogenic DOM components in the environment, but this approach has yet to be widely utilized for monitoring ecologically important aquatic systems. In this study we compared the DOM composition of Algoa Bay, Eastern Cape, South Africa, and its two estuaries. The Swartkops Estuary is highly urbanized and severely impacted by anthropogenic pollution, while the Sundays Estuary is impacted by commercial agriculture in its catchment. We employed solid-phase extraction followed by liquid chromatography tandem mass spectrometry to annotate more than 200 pharmaceuticals, pesticides, urban xenobiotics, and natural products based on spectral matching. The identification with authentic standards confirmed the presence of methamphetamine, carbamazepine, sulfamethoxazole, N-acetylsulfamethoxazole, imazapyr, caffeine and hexa(methoxymethyl)melamine, and allowed semi-quantitative estimations for annotated xenobiotics. The Swartkops Estuary DOM composition was strongly impacted by features annotated as urban pollutants including pharmaceuticals such as melamines and antiretrovirals. By contrast, the Sundays Estuary exhibited significant enrichment of molecules annotated as agrochemicals widely used in the citrus farming industry, with predicted concentrations for some of them exceeding predicted no-effect concentrations. This study provides new insight into anthropogenic impact on the Algoa Bay system and demonstrates the utility of non-targeted tandem mass spectrometry as a sensitive tool for assessing the health of ecologically important coastal ecosystems and will serve as a valuable foundation for strategizing long-term monitoring efforts.


Asunto(s)
Materia Orgánica Disuelta , Contaminantes Ambientales , Ecosistema , Estuarios , Bahías , Ríos/química , Agricultura , Preparaciones Farmacéuticas
3.
Nature ; 626(8000): 859-863, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326609

RESUMEN

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Asunto(s)
Aciltransferasas , Amidohidrolasas , Aminas , Ácidos y Sales Biliares , Biocatálisis , Microbioma Gastrointestinal , Humanos , Aciltransferasas/metabolismo , Amidohidrolasas/metabolismo , Aminas/química , Aminas/metabolismo , Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Estudios de Cohortes , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiología , Ligandos , Receptor X de Pregnano/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción/metabolismo , Lactante , Técnicas de Cultivo de Célula
4.
Nat Microbiol ; 9(2): 336-345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316926

RESUMEN

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Humanos , Metabolómica/métodos , Bases de Datos Factuales
5.
Nature ; 626(7998): 419-426, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052229

RESUMEN

Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis1,2, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn's disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4+ T cells3 and agonism of the pregnane X receptor4. Culture of bacteria belonging to the Bifidobacterium, Clostridium and Enterococcus genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.


Asunto(s)
Amidas , Ácidos y Sales Biliares , Ésteres , Ácidos Grasos , Metabolómica , Animales , Humanos , Bifidobacterium/metabolismo , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Clostridium/metabolismo , Estudios de Cohortes , Enfermedad de Crohn/metabolismo , Enterococcus/metabolismo , Ésteres/química , Ésteres/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Metabolómica/métodos , Fenotipo , Receptor X de Pregnano/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Amidas/química , Amidas/metabolismo
6.
Anal Chem ; 95(41): 15357-15366, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37796494

RESUMEN

Bile acids play key roles in nutrient uptake, inflammation, signaling, and microbiome composition. While previous bile acid analyses have primarily focused on profiling 5 canonical primary and secondary bile acids and their glycine and taurine amino acid-bile acid (AA-BA) conjugates, recent studies suggest that many other microbial conjugated bile acids (or MCBAs) exist. MCBAs are produced by the gut microbiota and serve as biomarkers, providing information about early disease onset and gut health. Here we analyzed 8 core bile acids synthetically conjugated with 22 proteinogenic and nonproteogenic amino acids totaling 176 MCBAs. Since many of the conjugates were isomeric and only 42 different m/z values resulted from the 176 MCBAs, a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) was used for their separation. Their molecular characteristics were then used to create an in-house extended bile acid library for a combined total of 182 unique compounds. Additionally, ∼250 rare bile acid extracts were also assessed to provide additional resources for bile acid profiling and identification. This library was then applied to healthy mice dosed with antibiotics and humans having fecal microbiota transplantation (FMT) to assess the MCBA presence and changes in the gut before and after each perturbation.


Asunto(s)
Aminoácidos , Ácidos y Sales Biliares , Humanos , Ratones , Animales , Isomerismo , Espectrometría de Masas , Esteroides
7.
Commun Biol ; 6(1): 896, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653089

RESUMEN

The dominant benthic primary producers in coral reef ecosystems are complex holobionts with diverse microbiomes and metabolomes. In this study, we characterize the tissue metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, O'ahu, Hawaii) and use these results to define associations between microbial taxa and metabolites specific to different hosts. Our results quantify and constrain the degree of host specificity of tissue metabolomes and microbiomes at both phylum and genus level. Both microbiome and metabolomes were distinct between calcifiers (corals and CCA) and erect macroalgae. Moreover, our multi-omics investigations highlight common lipid-based immune response pathways across host organisms. In addition, we observed strong covariation among several specific microbial taxa and metabolite classes, suggesting new metabolic roles of symbiosis to further explore.


Asunto(s)
Antozoos , Microbiota , Algas Marinas , Animales , Arrecifes de Coral , Simbiosis , Metaboloma
8.
Res Sq ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577622

RESUMEN

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

9.
Nat Microbiol ; 8(4): 611-628, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914755

RESUMEN

Bile acids (BAs) mediate the crosstalk between human and microbial cells and influence diseases including Clostridioides difficile infection (CDI). While bile salt hydrolases (BSHs) shape the BA pool by deconjugating conjugated BAs, the basis for their substrate selectivity and impact on C. difficile remain elusive. Here we survey the diversity of BSHs in the gut commensals Lactobacillaceae, which are commonly used as probiotics, and other members of the human gut microbiome. We structurally pinpoint a loop that predicts BSH preferences for either glycine or taurine substrates. BSHs with varying specificities were shown to restrict C. difficile spore germination and growth in vitro and colonization in pre-clinical in vivo models of CDI. Furthermore, BSHs reshape the pool of microbial conjugated bile acids (MCBAs) in the murine gut, and these MCBAs can further restrict C. difficile virulence in vitro. The recognition of conjugated BAs by BSHs defines the resulting BA pool, including the expansive MCBAs. This work provides insights into the structural basis of BSH mechanisms that shape the BA landscape and promote colonization resistance against C. difficile.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Ratones , Humanos , Clostridioides , Ácidos y Sales Biliares , Amidohidrolasas
10.
PLoS One ; 17(7): e0271794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881585

RESUMEN

Clinical testing typically relies on invasive blood draws and biopsies. Alternative methods of sample collection are continually being developed to improve patient experience; swabbing the skin is one of the least invasive sampling methods possible. To show that skin swabs in combination with untargeted mass spectrometry (metabolomics) can be used for non-invasive monitoring of an oral drug, we report the kinetics and metabolism of diphenhydramine in healthy volunteers (n = 10) over the course of 24 hours in blood and three regions of the skin. Diphenhydramine and its metabolites were observed on the skin after peak plasma levels, varying by compound and skin location, and is an illustrative example of how systemically administered molecules can be detected on the skin surface. The observation of diphenhydramine directly from the skin supports the hypothesis that both parent drug and metabolites can be qualitatively measured from a simple non-invasive swab of the skin surface. The mechanism of the drug and metabolites pathway to the skin's surface remains unknown.


Asunto(s)
Difenhidramina , Piel , Humanos , Espectrometría de Masas , Metabolómica , Piel/metabolismo
11.
Anim Microbiome ; 4(1): 33, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606844

RESUMEN

BACKGROUND: Gut microorganisms aid in the digestion of food by providing exogenous metabolic pathways to break down organic compounds. An integration of longitudinal microbial and chemical data is necessary to illuminate how gut microorganisms supplement the energetic and nutritional requirements of animals. Although mammalian gut systems are well-studied in this capacity, the role of microbes in the breakdown and utilization of recalcitrant marine macroalgae in herbivorous fish is relatively understudied and an emerging priority for bioproduct extraction. Here we use a comprehensive survey of the marine herbivorous fish gut microbial ecosystem via parallel 16S rRNA gene amplicon profiling (microbiota) and untargeted tandem mass spectrometry (metabolomes) to demonstrate consistent transitions among 8 gut subsections across five fish of the genus of Kyphosus. RESULTS: Integration of microbial phylogenetic and chemical diversity data reveals that microbial communities and metabolomes covaried and differentiated continuously from stomach to hindgut, with the midgut containing multiple distinct and previously uncharacterized microenvironments and a distinct hindgut community dominated by obligate anaerobes. This differentiation was driven primarily by anaerobic gut endosymbionts of the classes Bacteroidia and Clostridia changing in concert with bile acids, small peptides, and phospholipids: bile acid deconjugation associated with early midgut microbiota, small peptide production associated with midgut microbiota, and phospholipid production associated with hindgut microbiota. CONCLUSIONS: The combination of microbial and untargeted metabolomic data at high spatial resolution provides a new view of the diverse fish gut microenvironment and serves as a foundation to understand functional partitioning of microbial activities that contribute to the digestion of complex macroalgae in herbivorous marine fish.

12.
Nat Biotechnol ; 40(3): 411-421, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34650271

RESUMEN

Untargeted metabolomics experiments rely on spectral libraries for structure annotation, but, typically, only a small fraction of spectra can be matched. Previous in silico methods search in structure databases but cannot distinguish between correct and incorrect annotations. Here we introduce the COSMIC workflow that combines in silico structure database generation and annotation with a confidence score consisting of kernel density P value estimation and a support vector machine with enforced directionality of features. On diverse datasets, COSMIC annotates a substantial number of hits at low false discovery rates and outperforms spectral library search. To demonstrate that COSMIC can annotate structures never reported before, we annotated 12 natural bile acids. The annotation of nine structures was confirmed by manual evaluation and two structures using synthetic standards. In human samples, we annotated and manually validated 315 molecular structures currently absent from the Human Metabolome Database. Application of COSMIC to data from 17,400 metabolomics experiments led to 1,715 high-confidence structural annotations that were absent from spectral libraries.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Bases de Datos Factuales , Humanos , Metaboloma , Metabolómica/métodos , Estructura Molecular
13.
Anal Chem ; 93(38): 12833-12839, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34533933

RESUMEN

Molecular networking of non-targeted tandem mass spectrometry data connects structurally related molecules based on similar fragmentation spectra. Here, we report the Chemical Proportionality (ChemProp) contextualization of molecular networks. ChemProp scores the changes of abundance between two connected nodes over sequential data series (e.g., temporal or spatial relationships), which can be displayed as a direction within the network to prioritize potential biological and chemical transformations or proportional changes of (biosynthetically) related compounds. We tested the ChemProp workflow on a ground truth data set of a defined mixture and highlighted the utility of the tool to prioritize specific molecules within biological samples, including bacterial transformations of bile acids, human drug metabolism, and bacterial natural products biosynthesis. The ChemProp workflow is freely available through the Global Natural Products Social Molecular Networking (GNPS) environment.


Asunto(s)
Productos Biológicos , Espectrometría de Masas en Tándem , Humanos , Flujo de Trabajo
15.
Nat Commun ; 12(1): 3832, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158495

RESUMEN

Molecular networking connects mass spectra of molecules based on the similarity of their fragmentation patterns. However, during ionization, molecules commonly form multiple ion species with different fragmentation behavior. As a result, the fragmentation spectra of these ion species often remain unconnected in tandem mass spectrometry-based molecular networks, leading to redundant and disconnected sub-networks of the same compound classes. To overcome this bottleneck, we develop Ion Identity Molecular Networking (IIMN) that integrates chromatographic peak shape correlation analysis into molecular networks to connect and collapse different ion species of the same molecule. The new feature relationships improve network connectivity for structurally related molecules, can be used to reveal unknown ion-ligand complexes, enhance annotation within molecular networks, and facilitate the expansion of spectral reference libraries. IIMN is integrated into various open source feature finding tools and the GNPS environment. Moreover, IIMN-based spectral libraries with a broad coverage of ion species are publicly available.


Asunto(s)
Biología Computacional/métodos , Iones/metabolismo , Espectrometría de Masas/métodos , Redes y Vías Metabólicas , Metabolómica/métodos , Animales , Internet , Iones/química , Estructura Molecular , Reproducibilidad de los Resultados , Programas Informáticos
17.
mSystems ; 5(5)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994287

RESUMEN

Depression is influenced by the structure, diversity, and composition of the gut microbiome. Although depression has been described previously in human immunodeficiency virus (HIV) and hepatitis C virus (HCV) monoinfections, and to a lesser extent in HIV-HCV coinfection, research on the interplay between depression and the gut microbiome in these disease states is limited. Here, we characterized the gut microbiome using 16S rRNA amplicon sequencing of fecal samples from 373 participants who underwent a comprehensive neuropsychiatric assessment and the gut metabolome on a subset of these participants using untargeted metabolomics with liquid chromatography-mass spectrometry. We observed that the gut microbiome and metabolome were distinct between HIV-positive and -negative individuals. HCV infection had a large association with the microbiome that was not confounded by drug use. Therefore, we classified the participants by HIV and HCV infection status (HIV-monoinfected, HIV-HCV coinfected, or uninfected). The three groups significantly differed in their gut microbiome (unweighted UniFrac distances) and metabolome (Bray-Curtis distances). Coinfected individuals also had lower alpha diversity. Within each of the three groups, we evaluated lifetime major depressive disorder (MDD) and current Beck Depression Inventory-II. We found that the gut microbiome differed between depression states only in coinfected individuals. Coinfected individuals with a lifetime history of MDD were enriched in primary and secondary bile acids, as well as taxa previously identified in people with MDD. Collectively, we observe persistent signatures associated with depression only in coinfected individuals, suggesting that HCV itself, or interactions between HCV and HIV, may drive HIV-related neuropsychiatric differences.IMPORTANCE The human gut microbiome influences depression. Differences between the microbiomes of HIV-infected and uninfected individuals have been described, but it is not known whether these are due to HIV itself, or to common HIV comorbidities such as HCV coinfection. Limited research has explored the influence of the microbiome on depression within these groups. Here, we characterized the microbial community and metabolome in the stools from 373 people, noting the presence of current or lifetime depression as well as their HIV and HCV infection status. Our findings provide additional evidence that individuals with HIV have different microbiomes which are further altered by HCV coinfection. In individuals coinfected with both HIV and HCV, we identified microbes and molecules that were associated with depression. These results suggest that the interplay of HIV and HCV and the gut microbiome may contribute to the HIV-associated neuropsychiatric problems.

18.
Nat Methods ; 17(9): 901-904, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807955

RESUMEN

We present ReDU ( https://redu.ucsd.edu/ ), a system for metadata capture of public mass spectrometry-based metabolomics data, with validated controlled vocabularies. Systematic capture of knowledge enables the reanalysis of public data and/or co-analysis of one's own data. ReDU enables multiple types of analyses, including finding chemicals and associated metadata, comparing the shared and different chemicals between groups of samples, and metadata-filtered, repository-scale molecular networking.


Asunto(s)
Bases de Datos de Compuestos Químicos , Espectrometría de Masas , Metabolómica/métodos , Programas Informáticos , Metadatos , Modelos Químicos
19.
Front Psychiatry ; 11: 518, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581888

RESUMEN

Recent interest in the role of microbiota in health and disease has implicated gut microbiota dysbiosis in psychiatric disorders including major depressive disorder. Several antidepressant drugs that belong to the class of selective serotonin reuptake inhibitors have been found to display antimicrobial activities. In fact, one of the first antidepressants discovered serendipitously in the 1950s, the monoamine-oxidase inhibitor Iproniazid, was a drug used for the treatment of tuberculosis. In the current study we chronically treated DBA/2J mice for 2 weeks with paroxetine, a selective serotonin reuptake inhibitor, and collected fecal pellets as a proxy for the gut microbiota from the animals after 7 and 14 days. Behavioral testing with the forced swim test revealed significant differences between paroxetine- and vehicle-treated mice. Untargeted mass spectrometry and 16S rRNA profiling of fecal pellet extracts showed several primary and secondary bile acid level, and microbiota alpha diversity differences, respectively between paroxetine- and vehicle-treated mice, suggesting that microbiota functions are altered by the drug. In addition to their lipid absorbing activities bile acids have important signaling activities and have been associated with gastrointestinal diseases and colorectal cancer. Antidepressant drugs like paroxetine should therefore be used with caution to prevent undesirable side effects.

20.
Nat Protoc ; 15(6): 1954-1991, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32405051

RESUMEN

Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.


Asunto(s)
Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Cromatografía Liquida/métodos , Humanos , Redes y Vías Metabólicas , Ratones , Reproducibilidad de los Resultados , Programas Informáticos , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...