RESUMEN
In the past decades patients with hemophilia were infected commonly by hepatitis C virus (HCV) and a significant number of patients are infected chronically. Focusing on the role of the immune system for controlling and or maintaining HCV infection, the leukocyte and cytokine profiles of peripheral blood from hemophilia A patients and other patients with and without HCV infection were studied. The results demonstrated that hemophilia A is characterized by a general state of circulating leukocytes activation along with an overall increase in the frequency of IL-6 and IL-10 with decrease of IL-8 and IL-12. HCV infection of patients with hemophilia A does not influence further the activation state of circulating leukocytes but is accompanied by lower levels of alanine transaminase (ALT) and a prominent anti-inflammatory/regulatory serum cytokine pattern, mediated by IL-4 and IL-10. Additionally, the results demonstrated that hemophilia A patients infected with HCV displaying No/Low antibody response to C33c and C22 have significant lower viral load and higher serum levels of IL-12 and IL-4. This finding suggests that the differential RIBA reactivity to C33c/C22 HCV core proteins may have a putative value as a prognostic biomarker for the infection in hemophilia A patients.
Asunto(s)
Anticuerpos Antivirales/sangre , Hemofilia A/inmunología , Hepacivirus/inmunología , Hepatitis C Crónica/inmunología , Interleucina-10/sangre , Interleucina-4/sangre , Proteínas del Núcleo Viral/inmunología , Adulto , Anticuerpos Antivirales/inmunología , Microambiente Celular/inmunología , Femenino , Hemofilia A/sangre , Hemofilia A/complicaciones , Hemofilia A/diagnóstico , Hepatitis C Crónica/sangre , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/diagnóstico , Humanos , Inmunidad Innata , Interleucina-10/inmunología , Interleucina-12/sangre , Interleucina-12/inmunología , Interleucina-4/inmunología , Interleucina-6/sangre , Interleucina-6/inmunología , Masculino , Persona de Mediana Edad , Carga ViralRESUMEN
OBJECTIVES: Sodium salicylate (NaSal) can disturb cell viability by affecting the activity of multiple cellular molecules. In this work, we investigated the involvement of stress-responsive kinase GCN2 in regulating cell death and expression of stress genes in mouse embryonic fibroblasts (MEFs) upon exposure to NaSal. METHODS: Cell viability was assayed using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) method, and apoptosis was evaluated by annexin V and propidium iodide staining. A polymerase chain reaction (PCR) array approach was used to analyse differential expression of a panel of 84 endoplasmic reticulum (ER) stress-associated genes. Gene reporter assays were carried out to determine activity of ER stress element (ERSE), and the protein levels of activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP) were determined by western blot. KEY FINDINGS: NaSal treatment resulted in reduction of cellular viability and induction of apoptosis in wild-type but not Gcn2(-/-) cells. Many genes with important functions in protein synthesis/degradation, transcriptional regulation and apoptosis were induced by NaSal and most of these were dependent on GCN2. The activation of ERSE within Ddit3 and the production of CHOP and ATF6 induced by NaSal required GCN2. CONCLUSIONS: Our data provide evidence for the involvement of GCN2 in apoptosis and gene expression triggered by NaSal, and contributes to the understanding of molecular events occurring in NaSal-treated cells.
Asunto(s)
Apoptosis/genética , Estrés del Retículo Endoplásmico/genética , Proteínas Serina-Treonina Quinasas/genética , Salicilato de Sodio/farmacología , Factor de Transcripción Activador 6/genética , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Fibroblastos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Ratones , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Factor de Transcripción CHOP/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genéticaRESUMEN
The long half-life and stability of human serum albumin (HSA) make it an attractive candidate for fusion to short-lived therapeutic proteins. Albuferon (Human Genome Sciences [HGS], Inc., Rockville, MD) beta is a novel recombinant protein derived from a gene fusion of interferon-beta (IFN-beta ) and HSA. In vitro, Albuferon beta displays antiviral and antiproliferative activities and triggers the IFN-stimulated response element (ISRE) signal transduction pathway. Array analysis of 5694 independent genes in Daudi-treated cells revealed that Albuferon beta and IFN-beta induce the expression of an identical set of 30 genes, including 9 previously not identified. In rhesus monkeys administered a dose of 50 microg/kg intravenously (i.v.) or subcutaneously (s.c.) or 300 microg/kg s.c., Albuferon beta demonstrated favorable pharmacokinetic properties. Subcutaneous bioavailability was 87%, plasma clearance at 4.7-5.7 ml/h/kg was approximately 140-fold lower than that of IFN-beta, and the terminal half-life was 36-40 h compared with 8 h for IFN-beta. Importantly, Albuferon beta induced sustained increases in serum neopterin levels and 2',5' mRNA expression. At a molar dose equivalent to one-half the dose of IFN-beta, Albuferon beta elicited comparable neopterin responses and significantly higher 2',5'-OAS mRNA levels in rhesus monkeys. The enhanced in vivo pharmacologic properties of IFN-beta when fused to serum albumin suggest a clinical opportunity for improved IFN-beta therapy.