Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pac Symp Biocomput ; 29: 232-246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160283

RESUMEN

Drug repurposing (DR) intends to identify new uses for approved medications outside their original indication. Computational methods for finding DR candidates usually rely on prior biological and chemical information on a specific drug or target but rarely utilize real-world observations. In this work, we propose a simple and effective systematic screening approach to measure medication impact on hospitalization risk based on large-scale observational data. We use common classification systems to group drugs and diseases into broader functional categories and test for non-zero effects in each drug-disease category pair. Treatment effects on the hospitalization risk of an individual disease are obtained by combining widely used methods for causal inference and time-to-event modelling. 6468 drug-disease pairs were tested using data from the UK Biobank, focusing on cardiovascular, metabolic, and respiratory diseases. We determined key parameters to reduce the number of spurious correlations and identified 7 statistically significant associations of reduced hospitalization risk after correcting for multiple testing. Some of these associations were already reported in other studies, including new potential applications for cardioselective beta-blockers and thiazides. We also found evidence for proton pump inhibitor side effects and multiple possible associations for anti-diabetic drugs. Our work demonstrates the applicability of the present screening approach and the utility of real-world data for identifying potential DR candidates.


Asunto(s)
Biología Computacional , Reposicionamiento de Medicamentos , Humanos , Reposicionamiento de Medicamentos/métodos
2.
Am J Nucl Med Mol Imaging ; 11(6): 519-528, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003889

RESUMEN

INTRODUCTION: Evaluation of glomerular filtration rate is very important in both preclinical and clinical setting, especially in the context of chronic kidney disease. It is typically performed using 51Cr-EDTA or by imaging with 123I-Hippuran scintigraphy, which has a significantly lower resolution and sensitivity as compared to PET. 68Ga-EDTA represents a valid alternative due to its quick availability using a 68Ge/68Ga generator, while PET/CT enables both imaging of renal function and accurate quantitation of clearance of activity from both plasma and urine. Therefore, we aimed at investigating the use of 68Ga-EDTA as a preclinical tracer for determining renal function in a knock-in rat model known to present progressive decline of renal function. METHODS: 68Ga-EDTA was injected in 23 rats, either wild type (n=10) or knock-in (n=13). By applying a unidirectional, two-compartment model and Rutland-Patlak Plot linear regression analysis, split renal function was determined from the age of 6 weeks to 12 months. RESULTS: Glomerular filtration ranged from 0.025±0.01 ml/min at 6 weeks to 0.049±0.05 ml/min at 6 months in wild type rats. Glomerular filtration was significantly lower in knock-in rats at 6 and 12 months (P<0.01). No significant difference was observed in renal volumes between knock-in and wild type animals, based on imaging-derived volume calculations. CONCLUSIONS: 68Ga-EDTA turned out to be a very promising PET/CT tracer for the evaluation of split renal function. This method allowed detection of progressive renal impairment in a knock-in rat model. Additional validation in a human cohort is warranted to further assess clinical utility in both, healthy individuals and patients with renal impairment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...