Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Materials (Basel) ; 16(22)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38005159

RESUMEN

An important step towards improving performance while reducing weight and maintenance needs is the integration of composite materials into mechanical and aerospace engineering. This subject explores the many aspects of composite application, from basic material characterization to state-of-the-art advances in manufacturing and design processes. The major goal is to present the most recent developments in composite science and technology while highlighting their critical significance in the industrial sector-most notably in the wind energy, automotive, aerospace, and marine domains. The foundation of this investigation is material characterization, which offers insights into the mechanical, chemical, and physical characteristics that determine composite performance. The papers in this collection discuss the difficulties of gaining an in-depth understanding of composites, which is necessary to maximize their overall performance and design. The collection of articles within this topic addresses the challenges of achieving a profound understanding of composites, which is essential for optimizing design and overall functionality. This includes the application of complicated material modeling together with cutting-edge simulation tools that integrate multiscale methods and multiphysics, the creation of novel characterization techniques, and the integration of nanotechnology and additive manufacturing. This topic offers a detailed overview of the current state and future directions of composite research, covering experimental studies, theoretical evaluations, and numerical simulations. This subject provides a platform for interdisciplinary cooperation and creativity in everything from the processing and testing of innovative composite structures to the inspection and repair procedures. In order to support the development of more effective, durable, and sustainable materials for the mechanical and aerospace engineering industries, we seek to promote a greater understanding of composites.

2.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37833972

RESUMEN

Graphyne is a material that has unique mechanical properties, but little is known about how these properties change when the material has holes. In this work, the effect of hole geometry, considering circular, triangle, and rhombus hole configurations, on the mechanical nonlinear response of γ-graphyne structures is studied. Graphyne, graphdiyne, graphyne-3, and graphyne-4 structures are under investigation. An efficient nonlinear finite element analysis (FEA) method is adequately implemented under large deformations for this purpose. The study varied the size and shape of the holes to understand how these changes affect the nanostructure's mechanical response. The results indicate that the hole geometry significantly impacts the mechanical nonlinear response of γ-graphyne structures. The holes' size and shape affect the structures' elastic behavior, deformation, and strength. The findings can be used to optimize the design of γ-graphyne structures for specific mechanical applications. The study highlights the importance of considering the hole geometries in the design and fabrication of these materials.


Asunto(s)
Estrés Mecánico , Análisis de Elementos Finitos
3.
Micromachines (Basel) ; 14(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36837952

RESUMEN

The advancement of fundamental sciences in recent decades has led to an increased focus on the prediction of phenomena occurring at the micro and nano scales. Micro- and nanostructures have a wide range of applications in various fields, such as aerospace and automobiles, and are widely used in nano- and micro-sized systems and devices, such as biosensors, nanoactuators, and nanoprobes. The design of these structures relies on a complete understanding of their physical and mechanical behaviors. Mechanics plays a crucial role at the micro- and nanoscales, from the generation of nanostructures to the properties of nanocomposite materials and the manufacturing and design of machines, structures, sensors, actuators, fluidics, and more. This Special Issue aims to bring together high-quality papers that advance the field of micro- and nanostructures and systems through the use of modern computational and analytical methods, in conjunction with experimental techniques, for their analysis, design, manufacture, maintenance, quality, and reliability.

4.
Micromachines (Basel) ; 13(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36363920

RESUMEN

This work presents an optimization technique to determine the inspection, warranty period, and preventive maintenance policies for micromachines suffering from degradation. Specifically, wear degradation is considered, which is a common failure process for many Micro-Electro-Mechanical Systems (MEMS). The proposed mathematical model examines the impact of quality control on reliability and the duration of the warranty period given by the manufacturer or the supplier to the customer. Each of the above processes creates implementation costs. All the individual costs are integrated into a single measure, which is used to build the model and derive the optimal parameters of the quality and maintenance policies. The implementation of various levels of the quality, warranty, and maintenance policies are compared with their optimum level options to highlight their contribution to the assurance and improving product quality. To the authors' best knowledge, the introduction of a warranty period is implemented for the first time in the open literature concerning this type of optimization model for MEMs and surely can bring additional advantages to their quality promotion strategy. The proposed optimization tool provides a comprehensive simultaneous answer to the optimal selection of all the values of the design variables determining the overall maintenance and quality management approach.

5.
Materials (Basel) ; 15(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36143807

RESUMEN

Composites can be engineered to exhibit high strength, high stiffness, and high toughness. Composite structures have been used increasingly in various engineering applications. In recent decades, most fundamentals of science have expanded their reach by many orders of magnitude. Currently, one of the primary goals of science and technology seems to be the quest to develop reliable methods for linking the physical phenomena that occur over multiple length scales, particularly from a nano-/micro-scale to a macroscale. The aim of this Special Issue is to assemble high quality papers that advance the field of multiscale simulation of composite structures, through the application of any modern computational and/or analytical methods alone or in conjunction with experimental techniques, for damage assessment or mechanical analysis and prediction.

6.
Micromachines (Basel) ; 13(5)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35630242

RESUMEN

Additive manufacturing (AM) technology has been researched and developed for almost three decades. Microscale AM is one of the fastest-growing fields of research within the AM area. Considerable progress has been made in the development and commercialization of new and innovative microscale AM processes, as well as several practical applications in a variety of fields. However, there are still significant challenges that exist in terms of design, available materials, processes, and the ability to fabricate true three-dimensional structures and systems at a microscale. For instance, microscale AM fabrication technologies are associated with certain limitations and constraints due to the scale aspect, which may require the establishment and use of specialized design methodologies in order to overcome them. The aim of this paper is to review the main processes, materials, and applications of the current microscale AM technology, to present future research needs for this technology, and to discuss the need for the introduction of a design methodology. Thus, one of the primary concerns of the current paper is to present the design aspects describing the comparative advantages and AM limitations at the microscale, as well as the selection of processes and materials.

7.
Molecules ; 27(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35268829

RESUMEN

In this study, a nonlinear, spring-based finite element approach is employed in order to predict the nonlinear mechanical response of graphyne structures under shear loading. Based on Morse potential functions, suitable nonlinear spring finite elements are formulated simulating the interatomic interactions of different graphyne types. Specifically, the four well-known types of γ-graphyne, i.e., graphyne-1 also known as graphyne, graphyne-2 also known as graphdiyne, graphyne-3, and graphyne-4 rectangular sheets are numerically investigated applying appropriate boundary conditions representing shear load. The obtained finite element analysis results are employed to calculate the in-plane shear stress-strain behaviour, as well as the corresponding mechanical properties as shear modulus and shear strength. Comparisons of the present graphyne shearing response predictions with other corresponding estimations are performed to validate the present research results.

8.
Nanomaterials (Basel) ; 11(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34578577

RESUMEN

In the present study, a buckling analysis of laminated composite rectangular plates reinforced with multiwalled carbon nanotube (MWCNT) inclusions is carried out using the finite element method (FEM). The rule of mixtures and the Halpin-Tsai model are employed to calculate the elastic modulus of the nanocomposite matrix. The effects of three critical factors, including random dispersion, waviness, and agglomeration of MWCNTs in the polymer matrix, on the material properties of the nanocomposite are analyzed. Then, the critical buckling loads of the composite plates are numerically determined for different design parameters, such as plate side-to-thickness ratio, elastic modulus ratio, boundary conditions, layup schemes, and fiber orientation angles. The influence of carbon nanotube fillers on the critical buckling load of a nanocomposite rectangular plate, considering the modified Halpin-Tsai micromechanical model, is demonstrated. The results are in good agreement with experimental and other theoretical data available in the open literature.

9.
Materials (Basel) ; 13(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957537

RESUMEN

The aim of the present study is to provide a computationally efficient and reliable hybrid numerical formulation capable of characterizing the thermomechanical behavior of nanocomposites, which is based on the combination of molecular dynamics (MD) and the finite element method (FEM). A polymeric material is selected as the matrix-specifically, the poly(methyl methacrylate) (PMMA) commonly known as Plexiglas due to its expanded applications. On the other hand, the fullerene C240 is adopted as a reinforcement because of its high symmetry and suitable size. The numerical approach is performed at two scales. First, an analysis is conducted at the nanoscale by utilizing an appropriate nanocomposite unit cell containing the C240 at a high mass fraction. A MD-only method is applied to accurately capture all the internal interfacial effects and accordingly its thermoelastic response. Then, a micromechanical, temperature-dependent finite element analysis takes place using a representative volume element (RVE), which incorporates the first-stage MD output, to study nanocomposites with small mass fractions, whose atomistic-only simulation would require a substantial computational effort. To demonstrate the effectiveness of the proposed scheme, numerous numerical results are presented while the investigation is performed in a temperature range that includes the PMMA glass transition temperature, Tg.

10.
Materials (Basel) ; 13(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977462

RESUMEN

In this study, a computational procedure for the investigation of the vibration behavior of laminated composite structures, including graphene inclusions in the matrix, is developed. Concerning the size-dependent behavior of graphene, its mechanical properties are derived using nanoscopic empiric equations. Using the appropriate Halpin-Tsai models, the equivalent elastic constants of the graphene reinforced matrix are obtained. Then, the orthotropic mechanical properties of a composite lamina of carbon fibers and hybrid matrix can be evaluated. Considering a specific stacking sequence and various geometric configurations, carbon fiber-graphene-reinforced hybrid composite plates are modeled using conventional finite element techniques. Applying simply support or clamped boundary conditions, the vibrational behavior of the composite structures are finally extracted. Specifically, the modes of vibration for every configuration are derived, as well as the effect of graphene inclusions in the natural frequencies, is calculated. The higher the volume fraction of graphene in the matrix, the higher the natural frequency for every mode. Comparisons with other methods, where it is possible, are performed for the validation of the proposed method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...