Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1305586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322252

RESUMEN

Introduction: One of the unexpected outcomes of the COVID-19 pandemic was the relatively low levels of morbidity and mortality in Africa compared to the rest of the world. Nigeria, Africa's most populous nation, accounted for less than 0.01% of the global COVID-19 fatalities. The factors responsible for Nigeria's relatively low loss of life due to COVID-19 are unknown. Also, the correlates of protective immunity to SARS-CoV-2 and the impact of pre-existing immunity on the outcome of the COVID-19 pandemic in Africa are yet to be elucidated. Here, we evaluated the natural and vaccine-induced immune responses from vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria throughout the three waves of the COVID-19 pandemic in Nigeria. We also examined the pre-existing immune responses to SARS-CoV-2 from samples collected prior to the COVID-19 pandemic. Methods: We used spike RBD and N- IgG antibody ELISA to measure binding antibody responses, SARS-CoV-2 pseudotype assay protocol expressing the spike protein of different variants (D614G, Delta, Beta, Omicron BA1) to measure neutralizing antibody responses and nucleoprotein (N) and spike (S1, S2) direct ex vivo interferon gamma (IFNγ) T cell ELISpot to measure T cell responses. Result: Our study demonstrated a similar magnitude of both binding (N-IgG (74% and 62%), S-RBD IgG (70% and 53%) and neutralizing (D614G (49% and 29%), Delta (56% and 47%), Beta (48% and 24%), Omicron BA1 (41% and 21%)) antibody responses from symptomatic and asymptomatic survivors in Nigeria. A similar magnitude was also seen among vaccinated participants. Interestingly, we revealed the presence of preexisting binding antibodies (N-IgG (60%) and S-RBD IgG (44%)) but no neutralizing antibodies from samples collected prior to the pandemic. Discussion: These findings revealed that both vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria make similar magnitude of both binding and cross-reactive neutralizing antibody responses. It supported the presence of preexisting binding antibody responses among some Nigerians prior to the COVID-19 pandemic. Lastly, hybrid immunity and heterologous vaccine boosting induced the strongest binding and broadly neutralizing antibody responses compared to vaccine or infection-acquired immunity alone.


Asunto(s)
COVID-19 , Pueblo de África Occidental , Humanos , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , COVID-19/inmunología , Ensayo de Immunospot Ligado a Enzimas , Inmunoglobulina G , Nigeria , Pandemias , SARS-CoV-2
2.
J Infect Dis ; 229(3): 680-690, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37878754

RESUMEN

Most patients with COVID-19 in the intensive care unit develop an acute respiratory distress syndrome characterized by severe hypoxemia, decreased lung compliance, and high vascular permeability. Activation of the complement system is a hallmark of moderate and severe COVID-19, with abundant deposition of complement proteins in inflamed tissue and on the endothelium during COVID-19. Using a transgenic mouse model of SARS-CoV-2 infection, we assessed the therapeutic utility of an inhibitory antibody (HG4) targeting MASP-2, a key enzyme in the lectin pathway. Treatment of infected mice with HG4 reduced the disease severity score and improved survival vs mice that received an isotype control antibody. Administration of HG4 significantly reduced the lung injury score, including alveolar inflammatory cell infiltration, alveolar edema, and alveolar hemorrhage. The ameliorating effect of MASP-2 inhibition on the severity of COVID-19 pathology is reflected by a significant reduction in the proinflammatory activation of brain microglia in HG4-treated mice.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Animales , Ratones , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , SARS-CoV-2/metabolismo , Activación de Complemento , Modelos Animales de Enfermedad , Proteínas del Sistema Complemento
3.
Nat Biomed Eng ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749309

RESUMEN

The threat of spillovers of coronaviruses associated with the severe acute respiratory syndrome (SARS) from animals to humans necessitates vaccines that offer broader protection from sarbecoviruses. By leveraging a viral-genome-informed computational method for selecting immune-optimized and structurally engineered antigens, here we show that a single antigen based on the receptor binding domain of the spike protein of sarbecoviruses elicits broad humoral responses against SARS-CoV-1, SARS-CoV-2, WIV16 and RaTG13 in mice, rabbits and guinea pigs. When administered as a DNA immunogen or by a vector based on a modified vaccinia virus Ankara, the optimized antigen induced vaccine protection from the Delta variant of SARS-CoV-2 in mice genetically engineered to express angiotensin-converting enzyme 2 and primed by a viral-vector vaccine (AZD1222) against SARS-CoV-2. A vaccine formulation incorporating mRNA coding for the optimized antigen further validated its broad immunogenicity. Vaccines that elicit broad immune responses across subgroups of coronaviruses may counteract the threat of zoonotic spillovers of betacoronaviruses.

4.
Heliyon ; 9(6): e17362, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37389046

RESUMEN

Whilst the regulation of chromatin accessibility and its effect on gene expression have been well studied in eukaryotic species, the role of chromatin dynamics and 3D organisation in genome reduced bacteria remains poorly understood [1,2]. In this study we profiled the accessibility of the Mycoplasma hyorhinis genome, these data were collected fortuitously as part of an experiment where ATAC-Seq was conducted on mycoplasma, contaminated mammalian cells. We found a differential and highly reproducible chromatin accessibility landscape, with regions of increased accessibility corresponding to genes important for the bacteria's life cycle and infectivity. Furthermore, accessibility in general correlated with transcriptionally active genes as profiled by RNA-Seq, but peaks of high accessibility were also seen in non-coding and intergenic regions, which could contribute to the topological organisation of the genome. However, changes in transcription induced by starvation or application of the RNA polymerase inhibitor rifampicin did not themselves change the accessibility profile, which confirms that the differential accessibility is inherently a property of the genome, and not a consequence of its function. These results together show that differential chromatin accessibility is a key feature of the regulation of gene expression in bacteria.

5.
Front Immunol ; 14: 1118523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911730

RESUMEN

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Epítopos , Vacunas contra la COVID-19 , Polisacáridos , Anticuerpos Neutralizantes
7.
Sci Adv ; 8(1): eabl4895, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34995113

RESUMEN

Despite being the target of extensive research efforts due to the COVID-19 (coronavirus disease 2019) pandemic, relatively little is known about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within cells. We investigate and characterize the tightly orchestrated virus assembly by visualizing the spatiotemporal dynamics of the four structural SARS-CoV-2 proteins at high resolution. The nucleoprotein is expressed first and accumulates around folded endoplasmic reticulum (ER) membranes in convoluted layers that contain viral RNA replication foci. We find that, of the three transmembrane proteins, the membrane protein appears at the Golgi apparatus/ER-to-Golgi intermediate compartment before the spike and envelope proteins. Relocation of a lysosome marker toward the assembly compartment and its detection in transport vesicles of viral proteins confirm an important role of lysosomes in SARS-CoV-2 egress. These data provide insights into the spatiotemporal regulation of SARS-CoV-2 assembly and refine the current understanding of SARS-CoV-2 replication.

8.
Viruses ; 13(8)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34452443

RESUMEN

The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination.


Asunto(s)
Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , Coronavirus/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos ampliamente neutralizantes/sangre , Línea Celular , Coronavirus Humano 229E/inmunología , Coronavirus Humano 229E/fisiología , Coronavirus Humano NL63/inmunología , Coronavirus Humano NL63/fisiología , Coronavirus Humano OC43/inmunología , Coronavirus Humano OC43/fisiología , Reacciones Cruzadas , Humanos , Lentivirus/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Pruebas de Neutralización , Plásmidos , SARS-CoV-2/fisiología , Transfección , Internalización del Virus
10.
Rev Infirm ; 70(268): 35-36, 2021 Feb.
Artículo en Francés | MEDLINE | ID: mdl-33608095

RESUMEN

Initiated in 2009 by the Hospital, Patients, Health and Territories Act, the system of cooperation protocols between healthcare professionals aims, for patients, to reduce delays in accessing certain specific types of care. Paramedical staff, particularly nurses, trained to carry out certain activities in this context, hitherto exclusively performed by doctors, are developing increased skills and original career development opportunities. Three nurses from the Verdun/Saint-Mihiel hospital centre (55), involved for several months in a cooperation protocol in the field of corneal sampling, share their experience here.


Asunto(s)
Córnea , Relaciones Interprofesionales , Personal de Enfermería en Hospital , Manejo de Especímenes , Humanos , Personal de Enfermería en Hospital/psicología
11.
J Immunol ; 205(6): 1608-1619, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32817333

RESUMEN

CD4+ T cell functional inhibition (exhaustion) is a hallmark of malaria and correlates with impaired parasite control and infection chronicity. However, the mechanisms of CD4+ T cell exhaustion are still poorly understood. In this study, we show that Ag-experienced (Ag-exp) CD4+ T cell exhaustion during Plasmodium yoelii nonlethal infection occurs alongside the reduction in mammalian target of rapamycin (mTOR) activity and restriction in CD4+ T cell glycolytic capacity. We demonstrate that the loss of glycolytic metabolism and mTOR activity within the exhausted Ag-expCD4+ T cell population during infection coincides with reduction in T-bet expression. T-bet was found to directly bind to and control the transcription of various mTOR and metabolism-related genes within effector CD4+ T cells. Consistent with this, Ag-expTh1 cells exhibited significantly higher and sustained mTOR activity than effector T-bet- (non-Th1) Ag-expT cells throughout the course of malaria. We identified mTOR to be redundant for sustaining T-bet expression in activated Th1 cells, whereas mTOR was necessary but not sufficient for maintaining IFN-γ production by Th1 cells. Immunotherapy targeting PD-1, CTLA-4, and IL-27 blocked CD4+ T cell exhaustion during malaria infection and was associated with elevated T-bet expression and a concomitant increased CD4+ T cell glycolytic metabolism. Collectively, our data suggest that mTOR activity is linked to T-bet in Ag-expCD4+ T cells but that reduction in mTOR activity may not directly underpin Ag-expTh1 cell loss and exhaustion during malaria infection. These data have implications for therapeutic reactivation of exhausted CD4+ T cells during malaria infection and other chronic conditions.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Malaria/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Plasmodium yoelii/fisiología , Proteínas de Dominio T Box/metabolismo , Células TH1/inmunología , Animales , Senescencia Celular , Regulación de la Expresión Génica , Glucólisis , Humanos , Tolerancia Inmunológica , Memoria Inmunológica , Interferón gamma/metabolismo , Interleucina-27/metabolismo , Activación de Linfocitos , Malaria/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Dominio T Box/genética
12.
Mol Cell Endocrinol ; 439: 46-53, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27769714

RESUMEN

In this paper we report differential decoding of the ultradian corticosterone signal by glucocorticoid target tissues. Pulsatile corticosterone replacement in adrenalectomised rats resulted in different dynamics of Sgk1 mRNA production, with a distinct pulsatile mRNA induction profile observed in the pituitary in contrast to a non-pulsatile induction in the prefrontal cortex (PFC). We further report the first evidence for pulsatile transcriptional repression of a glucocorticoid-target gene in vivo, with pulsatile regulation of Pomc transcription in pituitary. We have explored a potential mechanism for differences in the induction dynamics of the same transcript (Sgk1) between the PFC and pituitary. Glucocorticoid receptor (GR) activation profiles were strikingly different in pituitary and prefrontal cortex, with a significantly greater dynamic range and shorter duration of GR activity detected in the pituitary, consistent with the more pronounced gene pulsing effect observed. In the prefrontal cortex, expression of Gilz mRNA was also non-pulsatile and exhibited a significantly delayed timecourse of increase and decrease when compared to Sgk1, additionally highlighting gene-specific regulatory dynamics during ultradian glucocorticoid treatment.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Especificidad de Órganos/genética , Ritmo Ultradiano/genética , Animales , Corticosterona/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Masculino , Especificidad de Órganos/efectos de los fármacos , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Ritmo Ultradiano/efectos de los fármacos
13.
Nat Rev Endocrinol ; 10(2): 71-2, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24366119

RESUMEN

2013 has revealed interesting mechanisms that explain how glucocorticoid signalling responses can be influenced by childhood trauma, activity of other signalling molecules, glucocorticoid circadian rhythms and the sequence of DNA regulatory regions. In particular, studies this year highlight how different signalling environments can determine the molecular and physiological responses of glucocorticoids themselves, and how glucocorticoids can affect other signalling systems.


Asunto(s)
Ambiente , Glucocorticoides/fisiología , Transducción de Señal/fisiología , Secuencia de Bases , Ritmo Circadiano/fisiología , Glucocorticoides/genética , Humanos , Factores de Tiempo
14.
Epigenomics ; 3(4): 471-85, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22126206

RESUMEN

Transcription factors (TF) regulate gene expression acting as DNA sequence-specific binding factors, orchestrating cofactor recruitment and assembly of the transcriptional machinery. Nuclear receptors, a ligand-inducible TF class, regulate a large proportion of the genome, yet achieve highly cell-specific and context-dependent transcription, despite their widespread expression. High-throughput genome-wide profiling of TF binding reveals a startling proportion of colocalized cell- and context-specific TF-binding patterns, implying TF interactions play a critical role in transcription. These interactions depend on the chromatin architecture, that predominantly acts to predetermine accessibility of TF-binding sites at regulatory elements. Here, we summarize recent findings that highlight the importance of combinatorial TF interactions in determining diverse nuclear receptor-mediated transcriptional responses, emphasizing the significance of chromatin structure in directing TF and nuclear receptor recruitment. Interactions between TFs are likely to be a general mechanism of regulatory factors, contributing to transcriptional control in health and disease.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Cromatina/genética , Regulación de la Expresión Génica/fisiología , Modelos Biológicos , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Cromatina/fisiología , Genómica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos
15.
Mol Endocrinol ; 25(6): 944-54, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21511880

RESUMEN

Glucocorticoid (GC) hormones are secreted from the adrenal gland in a characteristic pulsatile pattern. This ultradian secretory activity exhibits remarkable plasticity, with distinct changes in response to both physiological and stressful stimuli in humans and experimental animals. It is therefore important to understand how the pattern of GC exposure regulates intracellular signaling through the GC receptor (GR). We have previously shown that each pulse of ligand initiates rapid, transient GR activation in several physiologically relevant and functionally diverse target cell types. Using chromatin immunoprecipitation assays, we detect cyclical shifts in the net equilibrium position of GR association with regulatory elements of GC-target genes and have investigated in detail the mechanism of pulsatile transcriptional regulation of the GC-induced Period 1 gene. Transient recruitment of the histone acetyl transferase complex cAMP response element-binding protein (CREB) binding protein (CBP)/p300 is found to precisely track the ultradian hormone rhythm, resulting in transient localized net changes in lysine acetylation at GC-regulatory regions after each pulse. Pulsatile changes in histone H4 acetylation and concomitant recruitment of RNA polymerase 2 precede ultradian bursts of Period 1 gene transcription. Finally, we report the crucial underlying role of the intranuclear heat shock protein 90 molecular chaperone complex in pulsatile GR regulation. Pharmacological interference of heat shock protein 90 (HSP90) with geldanamycin during the intranuclear chaperone cycle completely ablated GR's cyclical activity, cyclical cAMP response element-binding protein (CREB) binding protein (CBP)/p300 recruitment, and the associated cyclical acetylation at the promoter region. These data imply a key role for an intact nuclear chaperone cycle in cyclical transcriptional responses, regulated in time by the pattern of pulsatile hormone.


Asunto(s)
Ciclos de Actividad/efectos de los fármacos , Proteína de Unión a CREB/genética , Corticosterona/farmacología , Proteínas HSP90 de Choque Térmico/metabolismo , Hidrocortisona/farmacología , Receptores de Glucocorticoides/genética , Factores de Transcripción p300-CBP/genética , Acetilación , Animales , Benzoquinonas/farmacología , Proteína de Unión a CREB/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Lactamas Macrocíclicas/farmacología , Leupeptinas/farmacología , Ligandos , Ratones , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Transporte de Proteínas/efectos de los fármacos , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Receptores de Glucocorticoides/metabolismo , Elementos Reguladores de la Transcripción , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...