Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Mach Intell ; 5(7): 739-753, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37771758

RESUMEN

Integrating gene expression across tissues and cell types is crucial for understanding the coordinated biological mechanisms that drive disease and characterise homeostasis. However, traditional multitissue integration methods cannot handle uncollected tissues or rely on genotype information, which is often unavailable and subject to privacy concerns. Here we present HYFA (Hypergraph Factorisation), a parameter-efficient graph representation learning approach for joint imputation of multi-tissue and cell-type gene expression. HYFA is genotype-agnostic, supports a variable number of collected tissues per individual, and imposes strong inductive biases to leverage the shared regulatory architecture of tissues and genes. In performance comparison on Genotype-Tissue Expression project data, HYFA achieves superior performance over existing methods, especially when multiple reference tissues are available. The HYFA-imputed dataset can be used to identify replicable regulatory genetic variations (eQTLs), with substantial gains over the original incomplete dataset. HYFA can accelerate the effective and scalable integration of tissue and cell-type transcriptome biorepositories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...