Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1717: 464671, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38278133

RESUMEN

In recent years, there has been an increasing worldwide interest in the use of alternative sample preparation methods. Digital light processing (DLP) is a 3D printing technique based on using UV light to form photo-curable resin layer upon layer, which results in a printed shape. This study explores the application of this technique for the development of novel drug extraction devices in analytical chemistry. A composite material consisting of a photocurable resin and C18-modified silica particles was employed as a sorbent device, demonstrating its effectiveness in pharmaceutical analysis. Apart from estimating optimal printing parameters, microscopic examination of the material surface, and sorbent powder to resin ratio, the extraction procedure was also optimised. Optimisation included the type and amount of sample matrix additives, desorption solvent, sorption and desorption times, and proper number of sorbent devices needed in extraction protocol. To demonstrate this method's applicability for sample analysis, the solid-phase extraction followed by gas chromatography coupled with mass spectrometry (SPE-GC-MS) method was validated for its ability to quantify benzodiazepine-type drugs. This evaluation confirmed good linearity in the concentration range of 50-1000 ng/mL, with R2 values being 0.9932 and 0.9952 for medazepam and diazepam, respectively. Validation parameters proved that the presented method is precise (with values ranging in-between 2.98 %-7.40 %), and accurate (88.81 % to 110.80 %). A negative control was also performed to investigate possible sorption properties of the resin itself, proving that the addition of C18-modified silica particles significantly increases the extraction efficiency and repeatability. The cost-effectiveness of this approach makes it particularly advantageous for single-use scenarios, eliminating the need for time-consuming sorbent-cleaning procedures, common in traditional solid-phase extraction techniques. Future optimisation opportunities include refining sorbent size, shape, and geometry to achieve lower limits of quantification. As a result of these findings, 3D-printed extraction devices can serve as a viable alternative to commercially available SPE or solid-phase microextraction (SPME) protocols for studying new sample preparation approaches.


Asunto(s)
Dióxido de Silicio , Microextracción en Fase Sólida , Cromatografía de Gases y Espectrometría de Masas , Dióxido de Silicio/química , Microextracción en Fase Sólida/métodos , Extracción en Fase Sólida , Acrilatos , Impresión Tridimensional
2.
Anal Chem ; 95(31): 11632-11640, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490645

RESUMEN

We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile-butadiene-styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite's effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent's shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33-47%) and high precision (2-6%), especially for carbamazepine microextraction.

3.
J Chromatogr A ; 1698: 463981, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37098291

RESUMEN

In this paper we demonstrate the development of the extraction procedure of polycyclic aromatic hydrocarbons from baby diapers along with their quantification by gas chromatography-mass spectrometry. Apart from covering plastic foil, disposable baby diapers contain sorbents intended to absorb urine and feces. A hygroscopic, adsorptive, and tough-to-homogenize fibrous sorbent, represents an analytical challenge to analytical chemists. To address this issue we optimized and validated a novel extraction protocol including cryogenic homogenization, liquid-liquid extraction and further preconcentration by evaporation. By using deuterated internal standards in conjunction with matrix-matched calibration, high precision and accuracy were achieved. The limit of detection is estimated in the range of 0.041-0.221 ng/g (for fluorene and fluoranthene, respectively), which is far below the concentration currently assumed to be dangerous for children. The method was successfully applied to real samples available on the Polish market, and it was found that the amount of PAH compounds varies between manufacturers. Most diapers do not have all 15 polycyclic aromatic hydrocarbons in their composition, but there is no diaper that is free of these compounds. The most abundant in diapers was acenaphthalene, where the concentration ranged from 1.6 ng/g diaper up to 362.4 ng/g. The lowest concentration in diapers is chrysene, which is not detected in most diapers. The article is a response to the lack of a harmonized analytical method for the determination of polycyclic aromatic hydrocarbons in disposable sanitary products for children.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Niño , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Extracción Líquido-Líquido , Adsorción , Calibración , Límite de Detección
4.
J Chromatogr A ; 1656: 462552, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34571283

RESUMEN

Naturally occurring molecules are excellent sources of lead compounds. A series of oleanolic acid (OA) derivatives previously synthesized in our laboratory, which show promising antitumor activity, have been analyzed in terms of lipophilicity evaluation applying chromatographic and computational approaches. Retention data obtained on three reversed-phase liquid chromatography stationary phases (RP-HPLC) and immobilized artificial membrane chromatography (IAM-HPLC) were compared with computational methods using chemometric tools such as cluster analysis, principal component analysis and sum of ranking differences. To investigate the molecular mechanism of retention quantitive structure retention relationship analysis was performed, based on the genetic algorithm coupled with multiple linear regression (GA-MLR). The obtained results suggested that the ionization potential of studied molecules significantly affects their retention in classical RP-HPLC. In IAM-HPLC additionally, polarizability-related descriptors also play an essential role in that process. The lipophilicity indices comparison shows significant differences between the computational lipophilicity and chromatographically determined ones.


Asunto(s)
Ácido Oleanólico , Triterpenos , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Ácido Oleanólico/análogos & derivados
5.
J Chromatogr A ; 1629: 461501, 2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-32841768

RESUMEN

Metabolic stability tests are one of the fundamental steps at the preclinical stages of new drug development. Microsomes, used as a typical enzymatic model of liver biotransformation, can be a challenging matrix for analytical scientists due to a high concentration of cellular proteins and membrane lipids. In the work, we propose a new procedure integrating biotransformation reaction with SPME-like protocol for sample clean-up. It is beneficial to increase the overall quality of results in contrary to the typical protein precipitation approach. A set of ten arylpiperazine analogs, six of which are considered promising drug candidates (and four are accepted drugs) were used as a probe to assess the goodness of the newly proposed approach. In order to promote an efficient extraction protocol, a new, miniaturized shape of a sorbent, suitable to perform the extraction in 100 µL of the sample has been designed. Termination of the biotransformation process by protein denaturation with hot water was additionally evaluated. A quantitative structure-property relationship (QSPR) study using Orthogonal Partial Least Squares (OPLS) technique to reveal insights to the sorption mechanism was also performed. The obtained results showed the new 3D-printed sorbent can be an attractive basis for the new sample preparation approach for metabolic stability studies and an alternative for commercially available protocols based on solid-phase microextraction (SPME) or solid-phase extraction (SPE) principles.


Asunto(s)
Preparaciones Farmacéuticas/química , Impresión Tridimensional , Adsorción , Análisis de los Mínimos Cuadrados , Preparaciones Farmacéuticas/aislamiento & purificación , Relación Estructura-Actividad Cuantitativa , Microextracción en Fase Sólida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...