Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Science ; 383(6686): eadk1291, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422154

RESUMEN

SynGAP is an abundant synaptic GTPase-activating protein (GAP) critical for synaptic plasticity, learning, memory, and cognition. Mutations in SYNGAP1 in humans result in intellectual disability, autistic-like behaviors, and epilepsy. Heterozygous Syngap1-knockout mice display deficits in synaptic plasticity, learning, and memory and exhibit seizures. It is unclear whether SynGAP imparts structural properties at synapses independently of its GAP activity. Here, we report that inactivating mutations within the GAP domain do not inhibit synaptic plasticity or cause behavioral deficits. Instead, SynGAP modulates synaptic strength by physically competing with the AMPA-receptor-TARP excitatory receptor complex in the formation of molecular condensates with synaptic scaffolding proteins. These results have major implications for developing therapeutic treatments for SYNGAP1-related neurodevelopmental disorders.


Asunto(s)
Cognición , Plasticidad Neuronal , Proteínas Activadoras de ras GTPasa , Animales , Humanos , Ratones , Trastorno Autístico/genética , Proteínas Activadoras de GTPasa/genética , Aprendizaje , Ratones Noqueados , Plasticidad Neuronal/genética , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Catálisis
2.
Proc Natl Acad Sci U S A ; 120(37): e2308891120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669379

RESUMEN

SYNGAP1 is a Ras-GTPase-activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in SYNGAP1 are a major cause of genetically defined neurodevelopmental disorders (NDDs). These mutations are highly penetrant and cause SYNGAP1-related intellectual disability (SRID), an NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances. Studies in rodent neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, and heterozygous Syngap1 knockout mice have deficits in synaptic plasticity, learning, and memory and have seizures. However, how specific SYNGAP1 mutations found in humans lead to disease has not been investigated in vivo. To explore this, we utilized the CRISPR-Cas9 system to generate knock-in mouse models with two distinct known causal variants of SRID: one with a frameshift mutation leading to a premature stop codon, SYNGAP1; L813RfsX22, and a second with a single-nucleotide mutation in an intron that creates a cryptic splice acceptor site leading to premature stop codon, SYNGAP1; c.3583-9G>A. While reduction in Syngap1 mRNA varies from 30 to 50% depending on the specific mutation, both models show ~50% reduction in Syngap1 protein, have deficits in synaptic plasticity, and recapitulate key features of SRID including hyperactivity and impaired working memory. These data suggest that half the amount of SYNGAP1 protein is key to the pathogenesis of SRID. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies for this disorder.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Humanos , Animales , Ratones , Codón sin Sentido , Convulsiones , Encéfalo , Modelos Animales de Enfermedad , Trastornos de la Memoria , Proteínas Activadoras de ras GTPasa
3.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37293116

RESUMEN

SYNGAP1 is a Ras-GTPase activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in SYNGAP1 are a major cause of genetically defined neurodevelopmental disorders (NDD). These mutations are highly penetrant and cause SYNGAP1 -related intellectual disability (SRID), a NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances (1-5). Studies in rodent neurons have shown that Syngap1 regulates developing excitatory synapse structure and function (6-11), and heterozygous Syngap1 knockout mice have deficits in synaptic plasticity, learning and memory, and have seizures (9, 12-14). However, how specific SYNGAP1 mutations found in humans lead to disease has not been investigated in vivo. To explore this, we utilized the CRISPR-Cas9 system to generate knock-in mouse models with two distinct known causal variants of SRID: one with a frameshift mutation leading to a premature stop codon, SYNGAP1; L813RfsX22, and a second with a single-nucleotide mutation in an intron that creates a cryptic splice acceptor site leading to premature stop codon, SYNGAP1; c.3583-9G>A . While reduction in Syngap1 mRNA varies from 30-50% depending on the specific mutation, both models show ∼50% reduction in Syngap1 protein, have deficits in synaptic plasticity, and recapitulate key features of SRID including hyperactivity and impaired working memory. These data suggest that half the amount of SYNGAP1 protein is key to the pathogenesis of SRID. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies for this disorder. Significance Statement: SYNGAP1 is a protein enriched at excitatory synapses in the brain that is an important regulator of synapse structure and function. SYNGAP1 mutations cause SYNGAP1 -related intellectual disability (SRID), a neurodevelopmental disorder with cognitive impairment, social deficits, seizures, and sleep disturbances. To explore how SYNGAP1 mutations found in humans lead to disease, we generated the first knock-in mouse models with causal SRID variants: one with a frameshift mutation and a second with an intronic mutation that creates a cryptic splice acceptor site. Both models show decreased Syngap1 mRNA and Syngap1 protein and recapitulate key features of SRID including hyperactivity and impaired working memory. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies. Highlights: Two mouse models with SYNGAP1 -related intellectual disability (SRID) mutations found in humans were generated: one with a frameshift mutation that results in a premature stop codon and the other with an intronic mutation resulting in a cryptic splice acceptor site and premature stop codon. Both SRID mouse models show 35∼50% reduction in mRNA and ∼50% reduction in Syngap1 protein.Both SRID mouse models display deficits in synaptic plasticity and behavioral phenotypes found in people. RNA-seq confirmed cryptic splice acceptor activity in one SRID mouse model and revealed broad transcriptional changes also identified in Syngap1 +/- mice. Novel SRID mouse models generated here provide a resource and establish a framework for development of future therapeutic intervention.

4.
J AAPOS ; 25(5): 278.e1-278.e6, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34582959

RESUMEN

PURPOSE: To document the increasing incidence of divergence insufficiency (DI) esotropia and to identify risk factors for DI. METHODS: All patients with a diagnosis of esotropia seen by one provider (DLG) over 41 years were identified from the medical record. Patients with onset of strabismus before age 10 years or with prior strabismus surgery were excluded. Cases of esotropia associated with thyroid eye disease, scleral buckles, trauma, neurological diseases, or atypical misalignment were included but not labeled as DI regardless of the distance versus near deviation. The remaining patients, whatever the original diagnosis, were retrospectively categorized as having, or not having, DI, using a uniform criterion: distance esotropia ≥5Δ more than near esotropia. RESULTS: The percentage of DI patients among acquired esotropia patients increased significantly between the first and second half of the 41-year period, from 11.8% to 29.4% (P < 0.001). Multivariate logistic regression identified advancing age and the use of progressive addition lenses as risk factors for the development of DI. CONCLUSIONS: The incidence of DI is increasing. DI's association with age and progressive addition lenses may help us to understand its etiology and to decrease the prevalence of this condition in the future.


Asunto(s)
Esotropía , Estrabismo , Niño , Esotropía/epidemiología , Esotropía/cirugía , Humanos , Incidencia , Músculos Oculomotores/cirugía , Procedimientos Quirúrgicos Oftalmológicos , Estudios Retrospectivos , Factores de Riesgo
5.
JCI Insight ; 2(15)2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28768908

RESUMEN

Among children with the most severe presentation of Marfan syndrome (MFS), an inherited disorder of connective tissue caused by a deficiency of extracellular fibrillin-1, heart failure is the leading cause of death. Here, we show that, while MFS mice (Fbn1C1039G/+ mice) typically have normal cardiac function, pressure overload (PO) induces an acute and severe dilated cardiomyopathy in association with fibrosis and myocyte enlargement. Failing MFS hearts show high expression of TGF-ß ligands, with increased TGF-ß signaling in both nonmyocytes and myocytes; pathologic ERK activation is restricted to the nonmyocyte compartment. Informatively, TGF-ß, angiotensin II type 1 receptor (AT1R), or ERK antagonism (with neutralizing antibody, losartan, or MEK inhibitor, respectively) prevents load-induced cardiac decompensation in MFS mice, despite persistent PO. In situ analyses revealed an unanticipated axis of activation in nonmyocytes, with AT1R-dependent ERK activation driving TGF-ß ligand expression that culminates in both autocrine and paracrine overdrive of TGF-ß signaling. The full compensation seen in wild-type mice exposed to mild PO correlates with enhanced deposition of extracellular fibrillin-1. Taken together, these data suggest that fibrillin-1 contributes to cardiac reserve in the face of hemodynamic stress, critically implicate nonmyocytes in disease pathogenesis, and validate ERK as a therapeutic target in MFS-related cardiac decompensation.

6.
Sci Transl Med ; 6(256): 256ra135, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25273096

RESUMEN

Kabuki syndrome is caused by haploinsufficiency for either of two genes that promote the opening of chromatin. If an imbalance between open and closed chromatin is central to the pathogenesis of Kabuki syndrome, agents that promote chromatin opening might have therapeutic potential. We have characterized a mouse model of Kabuki syndrome with a heterozygous deletion in the gene encoding the lysine-specific methyltransferase 2D (Kmt2d), leading to impairment of methyltransferase function. In vitro reporter alleles demonstrated a reduction in histone 4 acetylation and histone 3 lysine 4 trimethylation (H3K4me3) activity in mouse embryonic fibroblasts from Kmt2d(+/ßGeo) mice. These activities were normalized in response to AR-42, a histone deacetylase inhibitor. In vivo, deficiency of H3K4me3 in the dentate gyrus granule cell layer of Kmt2d(+/ßGeo) mice correlated with reduced neurogenesis and hippocampal memory defects. These abnormalities improved upon postnatal treatment with AR-42. Our work suggests that a reversible deficiency in postnatal neurogenesis underlies intellectual disability in Kabuki syndrome.


Asunto(s)
Anomalías Múltiples/tratamiento farmacológico , Encéfalo/fisiopatología , Cara/anomalías , Enfermedades Hematológicas/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Enfermedades Vestibulares/tratamiento farmacológico , Anomalías Múltiples/fisiopatología , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Cara/fisiopatología , Femenino , Enfermedades Hematológicas/fisiopatología , Hipocampo/fisiopatología , Humanos , Masculino , Ratones , Proteínas de Neoplasias/genética , Neurogénesis , Enfermedades Vestibulares/fisiopatología
7.
J Clin Invest ; 124(1): 448-60, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24355923

RESUMEN

Loeys-Dietz syndrome (LDS) is a connective tissue disorder that is characterized by a high risk for aneurysm and dissection throughout the arterial tree and phenotypically resembles Marfan syndrome. LDS is caused by heterozygous missense mutations in either TGF-ß receptor gene (TGFBR1 or TGFBR2), which are predicted to result in diminished TGF-ß signaling; however, aortic surgical samples from patients show evidence of paradoxically increased TGF-ß signaling. We generated 2 knockin mouse strains with LDS mutations in either Tgfbr1 or Tgfbr2 and a transgenic mouse overexpressing mutant Tgfbr2. Knockin and transgenic mice, but not haploinsufficient animals, recapitulated the LDS phenotype. While heterozygous mutant cells had diminished signaling in response to exogenous TGF-ß in vitro, they maintained normal levels of Smad2 phosphorylation under steady-state culture conditions, suggesting a chronic compensation. Analysis of TGF-ß signaling in the aortic wall in vivo revealed progressive upregulation of Smad2 phosphorylation and TGF-ß target gene output, which paralleled worsening of aneurysm pathology and coincided with upregulation of TGF-ß1 ligand expression. Importantly, suppression of Smad2 phosphorylation and TGF-ß1 expression correlated with the therapeutic efficacy of the angiotensin II type 1 receptor antagonist losartan. Together, these data suggest that increased TGF-ß signaling contributes to postnatal aneurysm progression in LDS.


Asunto(s)
Angiotensina II/fisiología , Aneurisma de la Aorta/metabolismo , Síndrome de Loeys-Dietz/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Animales , Aorta/patología , Aneurisma de la Aorta/prevención & control , Células Cultivadas , Progresión de la Enfermedad , Femenino , Haploinsuficiencia , Humanos , Síndrome de Loeys-Dietz/tratamiento farmacológico , Síndrome de Loeys-Dietz/patología , Losartán/uso terapéutico , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense , Miocitos del Músculo Liso/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo
8.
Nature ; 503(7474): 126-30, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24107997

RESUMEN

In systemic sclerosis (SSc), a common and aetiologically mysterious form of scleroderma (defined as pathological fibrosis of the skin), previously healthy adults acquire fibrosis of the skin and viscera in association with autoantibodies. Familial recurrence is extremely rare and causal genes have not been identified. Although the onset of fibrosis in SSc typically correlates with the production of autoantibodies, whether they contribute to disease pathogenesis or simply serve as a marker of disease remains controversial and the mechanism for their induction is largely unknown. The study of SSc is hindered by a lack of animal models that recapitulate the aetiology of this complex disease. To gain a foothold in the pathogenesis of pathological skin fibrosis, we studied stiff skin syndrome (SSS), a rare but tractable Mendelian disorder leading to childhood onset of diffuse skin fibrosis with autosomal dominant inheritance and complete penetrance. We showed previously that SSS is caused by heterozygous missense mutations in the gene (FBN1) encoding fibrillin-1, the main constituent of extracellular microfibrils. SSS mutations all localize to the only domain in fibrillin-1 that harbours an Arg-Gly-Asp (RGD) motif needed to mediate cell-matrix interactions by binding to cell-surface integrins. Here we show that mouse lines harbouring analogous amino acid substitutions in fibrillin-1 recapitulate aggressive skin fibrosis that is prevented by integrin-modulating therapies and reversed by antagonism of the pro-fibrotic cytokine transforming growth factor ß (TGF-ß). Mutant mice show skin infiltration of pro-inflammatory immune cells including plasmacytoid dendritic cells, T helper cells and plasma cells, and also autoantibody production; these findings are normalized by integrin-modulating therapies or TGF-ß antagonism. These results show that alterations in cell-matrix interactions are sufficient to initiate and sustain inflammatory and pro-fibrotic programmes and highlight new therapeutic strategies.


Asunto(s)
Autoinmunidad/efectos de los fármacos , Contractura/tratamiento farmacológico , Contractura/patología , Integrinas/efectos de los fármacos , Integrinas/metabolismo , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/patología , Enfermedades Cutáneas Genéticas/tratamiento farmacológico , Enfermedades Cutáneas Genéticas/patología , Secuencias de Aminoácidos/genética , Sustitución de Aminoácidos/genética , Animales , Anticuerpos Antinucleares/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Autoinmunidad/inmunología , Contractura/inmunología , Contractura/prevención & control , Células Dendríticas/efectos de los fármacos , Femenino , Fibrilina-1 , Fibrilinas , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Fibrosis/prevención & control , Masculino , Ratones , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutación Missense/genética , Células Plasmáticas/efectos de los fármacos , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/prevención & control , Enfermedades Cutáneas Genéticas/inmunología , Enfermedades Cutáneas Genéticas/prevención & control , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/inmunología
9.
FEBS Lett ; 586(14): 2003-15, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22641039

RESUMEN

Transforming growth factor beta (TGFß) is a multipotent cytokine that is sequestered in the extracellular matrix (ECM) through interactions with a number of ECM proteins. The ECM serves to concentrate latent TGFß at sites of intended function, to influence the bioavailability and/or function of TGFß activators, and perhaps to regulate the intrinsic performance of cell surface effectors of TGFß signal propagation. The downstream consequences of TGFß signaling cascades in turn provide feedback modulation of the ECM. This review covers recent examples of how genetic mutations in constituents of the ECM or TGFß signaling cascade result in altered ECM homeostasis, cellular performance and ultimately disease, with an emphasis on emerging therapeutic strategies that seek to capitalize on this refined mechanistic understanding.


Asunto(s)
Matriz Extracelular/metabolismo , Mutación , Factor de Crecimiento Transformador beta/metabolismo , Animales , Membrana Celular/metabolismo , Citocinas/metabolismo , Fibrilinas , Homeostasis , Humanos , Integrinas/metabolismo , Síndrome de Marfan/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , Fenotipo , Transducción de Señal , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA