Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Nature ; 627(8005): 783-788, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38538937

RESUMEN

Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2-7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin-orbit torque8-11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin-photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space-light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

3.
Nanomaterials (Basel) ; 12(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35159850

RESUMEN

In this paper, the investigation of laser-induced periodic surface structures (LIPSSs) on a polycrystalline diamond substrate using synthetic optical holography (SOH) is demonstrated. While many techniques for LIPSS detection operate with sample contact and/or require preparation or processing of the sample, this novel technique operates entirely non-invasively without any processing of or contact with the LIPSS sample at all. The setup provides holographic amplitude and phase images of the investigated sample with confocally enhanced and diffraction-limited lateral resolution, as well as three-dimensional surface topography images of the periodic structures via phase reconstruction with one single-layer scan only.

4.
Appl Opt ; 60(4): A15-A20, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33690349

RESUMEN

We present spatially resolved measurements of the below-band-gap carrier-induced absorption and concurrent phase change in a semiconductor with the help of transmission digital holography. The application is demonstrated for a bulk GaAs sample, while the holograms are recorded with a conventional CMOS sensor. We show that the phase information enables spatially resolved monitoring of excess carrier distributions. Based on that, we discuss a phase-based approach for separation of carrier and heat related effects in the semiconductor optical response.

5.
Appl Opt ; 60(4): A8-A14, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33690350

RESUMEN

In this paper, we present a confocal laser scanning holographic microscope for the investigation of buried structures. The multimodal system combines high diffraction limited resolution and high signal-to-noise-ratio with the ability of phase acquisition. The amplitude and phase imaging capabilities of the system are shown on a test target. For the investigation of buried integrated semiconductor structures, we expand our system with an optical beam induced current modality that provides additional structure-sensitive contrast. We demonstrate the performance of the multimodal system by imaging the buried structures of a microcontroller through the silicon backside of its housing in reflection geometry.

6.
Appl Opt ; 58(34): G41-G47, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873483

RESUMEN

This paper analyzes the performance of single-shot digital holographic microscopy for rapid characterization of static step-index structures in transparent polymer materials and for online monitoring of the photoinduced polymerization dynamics. The experiments are performed with a modified Mach-Zehnder transmission digital holographic microscope of high stability (phase accuracy of 0.69°) and of high magnification (of ≈90×). Use of near-infrared illumination allows both nondestructive examination of the manufactured samples and monitoring of optically induced processes in a photosensitive material concurrently with its excitation. The accuracy of the method for a precise sample's topography evaluation is studied on an example of microchannel sets fabricated via two-photon polymerization and is supported by reference measurements with an atomic force microscope. The applicability of the approach for dynamic measurements is proved via online monitoring of the refractive index evolution in a photoresin layer illuminated with a focused laser beam at 405 nm. High correlation between the experimental results and a kinetics model for the photopolymerization process is achieved.

7.
Dalton Trans ; 48(44): 16812, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31670361

RESUMEN

Correction for 'Luminescent Nd2S3 thin films: a new chemical vapour deposition route towards rare-earth sulphides' by Stefan Cwik et al., Dalton Trans., 2019, 48, 2926-2938.

8.
Nature ; 568(7751): 212-215, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944471

RESUMEN

Lasers have both ubiquitous applications and roles as model systems in which non-equilibrium and cooperative phenomena can be elucidated1. The introduction of novel concepts in laser operation thus has potential to lead to both new applications and fundamental insights2. Spintronics3, in which both the spin and the charge of the electron are used, has led to the development of spin-lasers, in which charge-carrier spin and photon spin are exploited. Here we show experimentally that the coupling between carrier spin and light polarization in common semiconductor lasers can enable room-temperature modulation frequencies above 200 gigahertz, exceeding by nearly an order of magnitude the best conventional semiconductor lasers. Surprisingly, this ultrafast operation of the resultant spin-laser relies on a short carrier spin relaxation time and a large anisotropy of the refractive index, both of which are commonly viewed as detrimental in spintronics3 and conventional lasers4. Our results overcome the key speed limitations of conventional directly modulated lasers and offer a prospect for the next generation of low-energy ultrafast optical communication.

9.
Dalton Trans ; 48(9): 2926-2938, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30542684

RESUMEN

Neodymium sulphide (Nd2S3) belongs to the exciting class of rare earth sulphides (RES) and is projected to have a serious potential in a wide spectrum of application either in pure form or as dopant. We demonstrate a facile and first growth of Nd2S3 thin films via metal-organic chemical vapour deposition (MOCVD) at moderate process conditions using two new Nd precursors, namely tris(N,N'-diisopropyl-2-dimethylamido-guanidinato)Nd(iii) and tris(N,N'-diisopropyl-acetamidinato)Nd(iii). The promising thermal properties and suitable reactivity of both Nd precursors towards elemental sulphur enabled the formation of high purity γ-Nd2S3. While the process temperature for film growth ranged from 400 °C to 600 °C, the films were crystalline above 500 °C. We also demonstrate that the as-deposited γ-Nd2S3 are luminescent, with the optical bandgap ranging from 2.3 eV to 2.5 eV. The process circumvents post-deposition treatments such as sulfurisation to fabricate the desired Nd2S3, which paves the way for large scale synthesis and also opens up new avenues for exploring the potential of this class of materials with properties for functional applications.

10.
J Biomed Opt ; 23(7): 1-7, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29484876

RESUMEN

Brain tissue analysis is highly desired in neurosurgery, such as tumor resection. To guarantee best life quality afterward, exact navigation within the brain during the surgery is essential. So far, no method has been established that perfectly fulfills this need. Optical coherence tomography (OCT) is a promising three-dimensional imaging tool to support neurosurgical resections. We perform a preliminary study toward in vivo brain tumor removal assistance by investigating meningioma, healthy white, and healthy gray matter. For that purpose, we utilized a commercially available OCT device (Thorlabs Callisto) and measured eight samples of meningioma, three samples of healthy white, and two samples of healthy gray matter ex vivo directly after removal. Structural variations of different tissue types, especially meningioma, can already be seen in the raw OCT images. Nevertheless, an automated differentiation approach is desired, so that neurosurgical guidance can be delivered without a-priori knowledge of the surgeon. Therefore, we employ different algorithms to extract texture features and apply pattern recognition methods for their classification. With these postprocessing steps, an accuracy of nearly 98% was found.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Meningioma/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Algoritmos , Animales , Humanos , Ratones , Reconocimiento de Normas Patrones Automatizadas , Fantasmas de Imagen , Cirugía Asistida por Computador
11.
Opt Express ; 25(16): 19398-19407, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29041134

RESUMEN

We demonstrate a method to select different layers in a sample using a low coherent gating approach combined with a stable common-path quantitative phase imaging microscopy setup. The depth-filtering technique allows us to suppress the negative effects generated by multiple interference patterns of overlaying optical interfaces in the sample. It maintains the compact and stable common-path setup, while enabling images with a high phase sensitivity and acquisition speed. We use a holographic microscope in reflective geometry with a non-tunable low coherence light source. First results of this technique are shown by imaging the hardware layer of a standard micro-controller through its thinned substrate.

12.
Opt Lett ; 39(14): 4160-3, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25121676

RESUMEN

In this Letter, we present a new approach to processing data from a standard spectral domain optical coherence tomography (OCT) system using depth filtered digital holography (DFDH). Intensity-based OCT processing has an axial resolution of the order of a few micrometers. When the phase information is used to obtain optical path length differences, subwavelength accuracy can be achieved, but this limits the resolvable step heights to half of the wavelength of the system. Thus there is a metrology gap between phase- and intensity-based methods. Our concept addresses this metrology gap by combining DFHD with multiwavelength phase unwrapping. Additionally, the measurements are corrected for aberrations. Here, we present proof of concept measurements of a structured semiconductor sample.

13.
Opt Express ; 22(5): 6025-39, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663938

RESUMEN

In this paper we analyze the capability of adaptive lenses to replace mechanical axial scanning in confocal microscopy. The adaptive approach promises to achieve high scan rates in a rather simple implementation. This may open up new applications in biomedical imaging or surface analysis in micro- and nanoelectronics, where currently the axial scan rates and the flexibility at the scan process are the limiting factors. The results show that fast and adaptive axial scanning is possible using electrically tunable lenses but the performance degrades during the scan. This is due to defocus and spherical aberrations introduced to the system by tuning of the adaptive lens. These detune the observation plane away from the best focus which strongly deteriorates the axial resolution by a factor of ~2.4. Introducing balancing aberrations allows addressing these influences. The presented approach is based on the employment of a second adaptive lens, located in the detection path. It enables shifting the observation plane back to the best focus position and thus creating axial scans with homogeneous axial resolution. We present simulated and experimental proof-of-principle results.

15.
Biomed Opt Express ; 4(12): 2945-61, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24409393

RESUMEN

Spectroscopic Optical Coherence Tomography (S-OCT) extracts depth resolved spectra that are inherently available from OCT signals. The back scattered spectra contain useful functional information regarding the sample, since the light is altered by wavelength dependent absorption and scattering caused by chromophores and structures of the sample. Two aspects dominate the performance of S-OCT: (1) the spectral analysis processing method used to obtain the spatially-resolved spectroscopic information and (2) the metrics used to visualize and interpret relevant sample features. In this work, we focus on the second aspect, where we will compare established and novel metrics for S-OCT. These concepts include the adaptation of methods known from multispectral imaging and modern signal processing approaches such as pattern recognition. To compare the performance of the metrics in a quantitative manner, we use phantoms with microsphere scatterers of different sizes that are below the system's resolution and therefore cannot be differentiated using intensity based OCT images. We show that the analysis of the spectral features can clearly separate areas with different scattering properties in multi-layer phantoms. Finally, we demonstrate the performance of our approach for contrast enhancement in bovine articular cartilage.

16.
Opt Express ; 20(20): 22636-48, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23037413

RESUMEN

We introduce depth-filtered digital holography (DFDH) as a method for quantitative tomographic phase imaging of buried layers in multilayer samples. The procedure is based on the acquisition of multiple holograms for different wavelengths. Analyzing the intensity over wavelength pixel wise and using an inverse Fourier transform leads to a depth-profile of the multilayered sample. Applying a windowed Fourier transform with a narrow window, we choose a depth-of interest (DOI) which is used to synthesize filtered interference patterns that just contain information of this limited depth. We use the angular spectrum method to introduce an additional spatial filtering and to reconstruct the corresponding holograms. After a short theoretical framework we show experimental proof-of-principle results for the method.


Asunto(s)
Algoritmos , Holografía/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Procesamiento de Señales Asistido por Computador
17.
Opt Express ; 19(22): 22004-23, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22109051

RESUMEN

We use photorefractive two-wave mixing for coherent amplification of the object beam in digital holographic recording. Both amplitude and phase reconstruction benefit from the prior amplification as they have an increased SNR. We experimentally verify that the amplification process does not affect the phase of the wavefield. This allows for digital holographic phase analysis after amplification. As the grating formation in photorefractive crystals is just driven by coherent light, the crystal works as a coherence gate. Thus the proposed combination allows for applying digital holography for imaging through scattering media, after the image bearing light is coherence gated and filtered out of scattered background. We show experimental proof-of principle results.

18.
J Biomed Opt ; 15(4): 046019, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20799821

RESUMEN

We investigate optical coherence tomography (OCT) as a method for imaging bone. The OCT images are compared directly to those of the standard methods of bone histology and microcomputed tomography (microCT) on a single, fixed human femoral trabecular bone sample. An advantage of OCT over bone histology is its noninvasive nature. OCT also images the lamellar structure of trabeculae at slightly higher contrast than normal bone histology. While microCT visualizes the trabecular framework of the whole sample, OCT can image additionally cells with a penetration depth limited approximately to 1 mm. The most significant advantage of OCT, however, is the absence of toxic effects (no ionizing radiation), i.e., continuous images may be made and individual cell tracking may be performed. The penetration depth of OCT, however, limits its use to small animal models and small bone organ cultures.


Asunto(s)
Algoritmos , Fémur/citología , Fémur/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Tomografía de Coherencia Óptica/métodos , Tomografía Computarizada por Rayos X/métodos , Humanos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Opt Express ; 18(9): 9076-87, 2010 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-20588755

RESUMEN

We present a method to speed up the acquisition of multispectral photoacoustic data sets by using unipolar orthogonal Golay codes as excitation sequences for the irradiation system. Multispectral photoacoustic coded excitation (MS-PACE) allows acquiring photoacoustic data sets for two irradiation wavelengths simultaneously and separating them afterwards, thus improving the SNR or speeding up the measurement. We derive an analytical estimation of the SNR improvement using MS-PACE compared to time equivalent averaging. We demonstrate the feasibility of the method by successfully imaging a phantom composed of two dyes using unipolar orthogonal Golay codes as excitation sequence for two high power laser diodes operating at two different wavelengths. The experimental results show very good agreement with the theoretical predictions.

20.
Artículo en Inglés | MEDLINE | ID: mdl-20639152

RESUMEN

Q-switched Nd:YAG lasers are commonly used as light sources for photoacoustic imaging. However, laser diodes are attractive as an alternative to Nd:YAG lasers because they are less expensive and more compact. Although laser diodes deliver about three orders of magnitude less light pulse energy than Nd:YAG lasers (tens of microjoules compared with tens of millijoules), their pulse repetition frequency (PRF) is four to five orders of magnitude higher (up to 1 MHz compared with tens of hertz); this enables the use of averaging to improve SNR without compromising the image acquisition rate. In photoacoustic imaging, the PRF is limited by the maximum acoustic time-of-flight. This limit can be overcome by using coded excitation schemes in which the coding eliminates ambiguities between echoes induced by subsequent pulses. To evaluate the benefits of photoacoustic coded excitation (PACE), the performance of unipolar Golay codes is investigated analytically and validated experimentally. PACE imaging of a copper slab using laser diodes at a PRF of 1 MHz and a modified clinical ultrasound scanner is successfully demonstrated. Considering laser safety regulations and taking into account a comparison between a laser diode system and Nd:YAG systems with respect to SNR, we conclude that PACE is feasible for small animal imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA