Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Structure ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38492570

RESUMEN

Group I chaperonins are dual heptamer protein complexes that play significant roles in protein homeostasis. The structure and function of the Escherichia coli chaperonin are well characterized. However, the dynamic properties of chaperonins, such as large ATPase-dependent conformational changes by binding of lid-like co-chaperonin GroES, have made structural analyses challenging, and our understanding of these changes during the turnover of chaperonin complex formation is limited. In this study, we used single-particle cryogenic electron microscopy to investigate the structures of GroES-bound chaperonin complexes from the thermophilic hydrogen-oxidizing bacteria Hydrogenophilus thermoluteolus and Hydrogenobacter thermophilus in the presence of ATP and AMP-PNP. We captured the structure of an intermediate state chaperonin complex, designated as an asymmetric football-shaped complex, and performed analyses to decipher the dynamic structural variations. Our structural analyses of inter- and intra-subunit communications revealed a unique mechanism of complex formation through the binding of a second GroES to a bullet-shaped complex.

2.
J Biol Chem ; 300(2): 105603, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159856

RESUMEN

Mammalian F-ATP synthase is central to mitochondrial bioenergetics and is present in the inner mitochondrial membrane in a dynamic oligomeric state of higher oligomers, tetramers, dimers, and monomers. In vitro investigations of mammalian F-ATP synthase are often limited by the ability to purify the oligomeric forms present in vivo at a quantity, stability, and purity that meets the demand of the planned experiment. We developed a purification approach for the isolation of bovine F-ATP synthase from heart muscle mitochondria that uses a combination of buffer conditions favoring inhibitor factor 1 binding and sucrose density gradient ultracentrifugation to yield stable complexes at high purity in the milligram range. By tuning the glyco-diosgenin to lauryl maltose neopentyl glycol ratio in a final gradient, fractions that are either enriched in tetrameric or monomeric F-ATP synthase can be obtained. It is expected that this large-scale column-free purification strategy broadens the spectrum of in vitro investigation on mammalian F-ATP synthase.


Asunto(s)
Membranas Mitocondriales , ATPasas de Translocación de Protón Mitocondriales , Animales , Bovinos , Adenosina Trifosfato/metabolismo , Dimerización , Mitocondrias Cardíacas/química , Membranas Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/aislamiento & purificación , Centrifugación por Gradiente de Densidad
3.
Commun Biol ; 6(1): 956, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726448

RESUMEN

Existing drugs often suffer in their effectiveness due to detrimental side effects, low binding affinity or pharmacokinetic problems. This may be overcome by the development of distinct compounds. Here, we exploit the rich structural basis of drug-bound gastric proton pump to develop compounds with strong inhibitory potency, employing a combinatorial approach utilizing deep generative models for de novo drug design with organic synthesis and cryo-EM structural analysis. Candidate compounds that satisfy pharmacophores defined in the drug-bound proton pump structures, were designed in silico utilizing our deep generative models, a workflow termed Deep Quartet. Several candidates were synthesized and screened according to their inhibition potencies in vitro, and their binding poses were in turn identified by cryo-EM. Structures reaching up to 2.10 Å resolution allowed us to evaluate and re-design compound structures, heralding the most potent compound in this study, DQ-18 (N-methyl-4-((2-(benzyloxy)-5-chlorobenzyl)oxy)benzylamine), which shows a Ki value of 47.6 nM. Further high-resolution cryo-EM analysis at 2.08 Å resolution unambiguously determined the DQ-18 binding pose. Our integrated approach offers a framework for structure-based de novo drug development based on the desired pharmacophores within the protein structure.


Asunto(s)
Aprendizaje Profundo , Diseño de Fármacos , Estómago , Desarrollo de Medicamentos , Farmacóforo
4.
Cell Death Differ ; 30(8): 1869-1885, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460667

RESUMEN

The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial/análisis , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Consenso , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo
5.
Biochim Biophys Acta Bioenerg ; 1864(4): 148986, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270022

RESUMEN

Photosystem I (PSI) from the green alga Chlamydomonas reinhardtii, with various numbers of membrane bound antenna complexes (LHCI), has been described in great detail. In contrast, structural characterization of soluble binding partners is less advanced. Here, we used X-ray crystallography and single particle cryo-EM to investigate three structures of the PSI-LHCI supercomplex from Chlamydomonas reinhardtii. An X-ray structure demonstrates the absence of six chlorophylls from the luminal side of the LHCI belts, suggesting these pigments were either physically absent or less stably associated with the complex, potentially influencing excitation transfer significantly. CryoEM revealed extra densities on luminal and stromal sides of the supercomplex, situated in the vicinity of the electron transfer sites. These densities disappeared after the binding of oxidized ferredoxin to PSI-LHCI. Based on these structures, we propose the existence of a PSI-LHCI resting state with a reduced active chlorophyll content, electron donors docked in waiting positions and regulatory binding partners positioned at the electron acceptor site. The resting state PSI-LHCI supercomplex would be recruited to its active form by the availability of oxidized ferredoxin.


Asunto(s)
Chlamydomonas reinhardtii , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Chlamydomonas reinhardtii/metabolismo , Ferredoxinas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila/metabolismo
6.
EMBO J ; 42(10): e111699, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36912136

RESUMEN

The maintenance of cellular function relies on the close regulation of adenosine triphosphate (ATP) synthesis and hydrolysis. ATP hydrolysis by mitochondrial ATP Synthase (CV) is induced by loss of proton motive force and inhibited by the mitochondrial protein ATPase inhibitor (ATPIF1). The extent of CV hydrolytic activity and its impact on cellular energetics remains unknown due to the lack of selective hydrolysis inhibitors of CV. We find that CV hydrolytic activity takes place in coupled intact mitochondria and is increased by respiratory chain defects. We identified (+)-Epicatechin as a selective inhibitor of ATP hydrolysis that binds CV while preventing the binding of ATPIF1. In cells with Complex-III deficiency, we show that inhibition of CV hydrolytic activity by (+)-Epichatechin is sufficient to restore ATP content without restoring respiratory function. Inhibition of CV-ATP hydrolysis in a mouse model of Duchenne Muscular Dystrophy is sufficient to improve muscle force without any increase in mitochondrial content. We conclude that the impact of compromised mitochondrial respiration can be lessened using hydrolysis-selective inhibitors of CV.


Asunto(s)
Adenosina Trifosfato , Mitocondrias , Ratones , Animales , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón/metabolismo , Proteínas/metabolismo , Homeostasis , Hidrólisis
7.
ACS Cent Sci ; 9(3): 494-507, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36968527

RESUMEN

Functional reintegration into lipid environments represents a major challenge for in vitro investigation of integral membrane proteins (IMPs). Here, we report a new approach, termed LMNG Auto-insertion Reintegration (LAiR), for reintegration of IMPs into lipid bilayers within minutes. The resulting proteoliposomes displayed an unprecedented capability to maintain proton gradients and long-term stability. LAiR allowed for monitoring catalysis of a membrane-bound, physiologically relevant polyisoprenoid quinone substrate by Escherichia coli cytochromes bo 3 (cbo 3) and bd (cbd) under control of the proton motive force. LAiR also facilitated bulk-phase detection and physiological assessment of the "proton leak" in cbo 3, a controversial catalytic state that previously was only approachable at the single-molecule level. LAiR maintained the multisubunit integrity and higher-order oligomeric states of the delicate mammalian F-ATP synthase. Given that LAiR can be applied to both liposomes and planar membrane bilayers and is compatible with IMPs and lipids from prokaryotic and eukaryotic sources, we anticipate LAiR to be applied broadly across basic research, pharmaceutical applications, and biotechnology.

8.
Commun Biol ; 5(1): 951, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097054

RESUMEN

Photosystem I (PSI) is a light driven electron pump transferring electrons from Cytochrome c6 (Cyt c6) to Ferredoxin (Fd). An understanding of this electron transfer process is hampered by a paucity of structural detail concerning PSI:Fd interface and the possible binding sites of Cyt c6. Here we describe the high resolution cryo-EM structure of Thermosynechococcus elongatus BP-1 PSI in complex with Fd and a loosely bound Cyt c6. Side chain interactions at the PSI:Fd interface including bridging water molecules are visualized in detail. The structure explains the properties of mutants of PsaE and PsaC that affect kinetics of Fd binding and suggests a molecular switch for the dissociation of Fd upon reduction. Calorimetry-based thermodynamic analyses confirms a single binding site for Fd and demonstrates that PSI:Fd complexation is purely driven by entropy. A possible reaction cycle for the efficient transfer of electrons from Cyt c6 to Fd via PSI is proposed.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema I , Sitios de Unión , Cianobacterias/metabolismo , Transporte de Electrón , Ferredoxinas/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo
9.
Microscopy (Oxf) ; 71(5): 249-261, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-35861182

RESUMEN

Progress in structural membrane biology has been significantly accelerated by the ongoing 'Resolution Revolution' in cryo-electron microscopy (cryo-EM). In particular, structure determination by single-particle analysis has evolved into the most powerful method for atomic model building of multisubunit membrane protein complexes. This has created an ever-increasing demand in cryo-EM machine time, which to satisfy is in need of new and affordable cryo-electron microscopes. Here, we review our experience in using the JEOL CRYO ARM 200 prototype for the structure determination by single-particle analysis of three different multisubunit membrane complexes: the Thermus thermophilus V-type ATPase VO complex, the Thermosynechococcus elongatus photosystem I monomer and the flagellar motor lipopolysaccharide peptidoglycan ring (LP ring) from Salmonella enterica.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares , Microscopía por Crioelectrón/métodos , Lipopolisacáridos , Peptidoglicano , Complejo de Proteína del Fotosistema I/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo
10.
J Med Chem ; 65(11): 7843-7853, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35604136

RESUMEN

As specific inhibitors of the gastric proton pump, responsible for gastric acidification, K+-competitive acid blockers (P-CABs) have recently been utilized in the clinical treatment of gastric acid-related diseases in Asia. However, as these compounds have been developed based on phenotypic screening, their detailed binding poses are unknown. We show crystal and cryo-EM structures of the gastric proton pump in complex with four different P-CABs, tegoprazan, soraprazan, PF-03716556 and revaprazan, at resolutions reaching 2.8 Å. The structures describe molecular details of their interactions and are supported by functional analyses of mutations and molecular dynamics simulations. We reveal that revaprazan has a novel binding mode in which its tetrahydroisoquinoline moiety binds deep in the cation transport conduit. The mechanism of action of these P-CABs can now be evaluated at the molecular level, which will facilitate the rational development and improvement of currently available P-CABs to provide better treatment of acid-related gastrointestinal diseases.


Asunto(s)
Inhibidores de la Bomba de Protones , Bombas de Protones , Ácido Gástrico/metabolismo , Potasio/metabolismo , Inhibidores de la Bomba de Protones/metabolismo , Inhibidores de la Bomba de Protones/farmacología , Bombas de Protones/metabolismo , Estómago
11.
Cell Death Differ ; 29(12): 2335-2346, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35614131

RESUMEN

Binding of the mitochondrial chaperone TRAP1 to client proteins shapes bioenergetic and proteostatic adaptations of cells, but the panel of TRAP1 clients is only partially defined. Here we show that TRAP1 interacts with F-ATP synthase, the protein complex that provides most cellular ATP. TRAP1 competes with the peptidyl-prolyl cis-trans isomerase cyclophilin D (CyPD) for binding to the oligomycin sensitivity-conferring protein (OSCP) subunit of F-ATP synthase, increasing its catalytic activity and counteracting the inhibitory effect of CyPD. Electrophysiological measurements indicate that TRAP1 directly inhibits a channel activity of purified F-ATP synthase endowed with the features of the permeability transition pore (PTP) and that it reverses PTP induction by CyPD, antagonizing PTP-dependent mitochondrial depolarization and cell death. Conversely, CyPD outcompetes the TRAP1 inhibitory effect on the channel. Our data identify TRAP1 as an F-ATP synthase regulator that can influence cell bioenergetics and survival and can be targeted in pathological conditions where these processes are dysregulated, such as cancer.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Humanos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo
12.
Commun Biol ; 4(1): 304, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686186

RESUMEN

A high-resolution structure of trimeric cyanobacterial Photosystem I (PSI) from Thermosynechococcus elongatus was reported as the first atomic model of PSI almost 20 years ago. However, the monomeric PSI structure has not yet been reported despite long-standing interest in its structure and extensive spectroscopic characterization of the loss of red chlorophylls upon monomerization. Here, we describe the structure of monomeric PSI from Thermosynechococcus elongatus BP-1. Comparison with the trimer structure gave detailed insights into monomerization-induced changes in both the central trimerization domain and the peripheral regions of the complex. Monomerization-induced loss of red chlorophylls is assigned to a cluster of chlorophylls adjacent to PsaX. Based on our findings, we propose a role of PsaX in the stabilization of red chlorophylls and that lipids of the surrounding membrane present a major source of thermal energy for uphill excitation energy transfer from red chlorophylls to P700.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Clorofila/química , Microscopía por Crioelectrón , Complejo de Proteína del Fotosistema I/ultraestructura , Proteínas Bacterianas/metabolismo , Clorofila/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Complejo de Proteína del Fotosistema I/metabolismo , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Ultravioleta , Thermosynechococcus/metabolismo , Thermosynechococcus/ultraestructura
13.
Pharmacol Res ; 160: 105081, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32679179

RESUMEN

The current state of research on the mitochondrial permeability transition pore (PTP) can be described in terms of three major problems: molecular identity, atomic structure and gating mechanism. In this review these three problems are discussed in the light of recent findings with special emphasis on the discovery that the PTP is mitochondrial F-ATP synthase (mtFoF1). Novel features of the mitochondrial F-ATP synthase emerging from the success of single particle cryo electron microscopy (cryo-EM) to determine F-ATP synthase structures are surveyed along with their possible involvement in pore formation. Also, current findings from the gap junction field concerning the involvement of lipids in channel closure are examined. Finally, an earlier proposal denoted as the 'Death Finger' is discussed as a working model for PTP gating.


Asunto(s)
Mitocondrias/enzimología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Apoptosis , Humanos , Activación del Canal Iónico , Potenciales de la Membrana , Mitocondrias/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial/química , ATPasas de Translocación de Protón Mitocondriales/química , Modelos Biológicos , Conformación Proteica , Subunidades de Proteína , Relación Estructura-Actividad
14.
Nat Commun ; 10(1): 4341, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554800

RESUMEN

The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. By combining highly purified, fully active bovine F-ATP synthase with preformed liposomes we show that Ca2+ dissipates the H+ gradient generated by ATP hydrolysis. After incorporation of the same preparation into planar lipid bilayers Ca2+ elicits currents matching those of the MMC/PTP. Currents were fully reversible, were stabilized by benzodiazepine 423, a ligand of the OSCP subunit of F-ATP synthase that activates the MMC/PTP, and were inhibited by Mg2+ and adenine nucleotides, which also inhibit the PTP. Channel activity was insensitive to inhibitors of the adenine nucleotide translocase (ANT) and of the voltage-dependent anion channel (VDAC). Native gel-purified oligomers and dimers, but not monomers, gave rise to channel activity. These findings resolve the long-standing mystery of the MMC/PTP and demonstrate that Ca2+ can transform the energy-conserving F-ATP synthase into an energy-dissipating device.


Asunto(s)
Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Bovinos , Microscopía por Crioelectrón , Hidrólisis , Magnesio/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/ultraestructura , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
15.
J Membr Biol ; 252(2-3): 115-130, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30877332

RESUMEN

Of all the macromolecular assemblies of life, the least understood is the biomembrane. This is especially true in regard to its atomic structure. Ideas on biomembranes, developed in the last 200 years, culminated in the fluid mosaic model of the membrane. In this essay, I provide a historical outline of how we arrived at our current understanding of biomembranes and the models we use to describe them. A selection of direct experimental findings on the nano-scale structure of biomembranes is taken up to discuss their physical nature, and special emphasis is put on the surprising insights that arise from atomic scale descriptions.


Asunto(s)
Membrana Celular/ultraestructura , Lípidos de la Membrana/química , Microdominios de Membrana/ultraestructura , Proteínas de la Membrana/ultraestructura , Membrana Celular/metabolismo , Cristalografía por Rayos X , Enterococcus hirae/metabolismo , Enterococcus hirae/ultraestructura , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Halobacterium salinarum/metabolismo , Halobacterium salinarum/ultraestructura , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Conformación Proteica
16.
Science ; 362(6416): 829-834, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30442809

RESUMEN

Membrane proteins reside in lipid bilayers and are typically extracted from this environment for study, which often compromises their integrity. In this work, we ejected intact assemblies from membranes, without chemical disruption, and used mass spectrometry to define their composition. From Escherichia coli outer membranes, we identified a chaperone-porin association and lipid interactions in the ß-barrel assembly machinery. We observed efflux pumps bridging inner and outer membranes, and from inner membranes we identified a pentameric pore of TonB, as well as the protein-conducting channel SecYEG in association with F1FO adenosine triphosphate (ATP) synthase. Intact mitochondrial membranes from Bos taurus yielded respiratory complexes and fatty acid-bound dimers of the ADP (adenosine diphosphate)/ATP translocase (ANT-1). These results highlight the importance of native membrane environments for retaining small-molecule binding, subunit interactions, and associated chaperones of the membrane proteome.


Asunto(s)
Translocador 1 del Nucleótido Adenina/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Canales de Translocación SEC/metabolismo , Translocador 1 del Nucleótido Adenina/química , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Bovinos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/química , Membranas Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/química , Chaperonas Moleculares/química , Porinas/química , Porinas/metabolismo , Conformación Proteica en Lámina beta , Proteoma/química , Proteoma/metabolismo , Canales de Translocación SEC/química
17.
Nat Commun ; 9(1): 3399, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143614

RESUMEN

It is unclear how the mitochondrial fusion protein Optic atrophy 1 (OPA1), which inhibits cristae remodeling, protects from mitochondrial dysfunction. Here we identify the mitochondrial F1Fo-ATP synthase as the effector of OPA1 in mitochondrial protection. In OPA1 overexpressing cells, the loss of proton electrochemical gradient caused by respiratory chain complex III inhibition is blunted and this protection is abolished by the ATP synthase inhibitor oligomycin. Mechanistically, OPA1 and ATP synthase can interact, but recombinant OPA1 fails to promote oligomerization of purified ATP synthase reconstituted in liposomes, suggesting that OPA1 favors ATP synthase oligomerization and reversal activity by modulating cristae shape. When ATP synthase oligomers are genetically destabilized by silencing the key dimerization subunit e, OPA1 is no longer able to preserve mitochondrial function and cell viability upon complex III inhibition. Thus, OPA1 protects mitochondria from respiratory chain inhibition by stabilizing cristae shape and favoring ATP synthase oligomerization.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Antimicina A/farmacología , Supervivencia Celular/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , GTP Fosfohidrolasas/genética , Immunoblotting , Inmunoprecipitación , Ratones , Microscopía Electrónica de Transmisión , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética
18.
J Struct Biol ; 200(2): 73-86, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29032142

RESUMEN

Resolving the 3D architecture of cells to atomic resolution is one of the most ambitious challenges of cellular and structural biology. Central to this process is the ability to automate tomogram segmentation to identify sub-cellular components, facilitate molecular docking and annotate detected objects with associated metadata. Here we demonstrate that RAZA (Rapid 3D z-crossings algorithm) provides a robust, accurate, intuitive, fast, and generally applicable segmentation algorithm capable of detecting organelles, membranes, macromolecular assemblies and extrinsic membrane protein domains. RAZA defines each continuous contour within a tomogram as a discrete object and extracts a set of 3D structural fingerprints (major, middle and minor axes, surface area and volume), enabling selective, semi-automated segmentation and object extraction. RAZA takes advantage of the fact that the underlying algorithm is a true 3D edge detector, allowing the axes of a detected object to be defined, independent of its random orientation within a cellular tomogram. The selectivity of object segmentation and extraction can be controlled by specifying a user-defined detection tolerance threshold for each fingerprint parameter, within which segmented objects must fall and/or by altering the number of search parameters, to define morphologically similar structures. We demonstrate the capability of RAZA to selectively extract subgroups of organelles (mitochondria) and macromolecular assemblies (ribosomes) from cellular tomograms. Furthermore, the ability of RAZA to define objects and their contours, provides a basis for molecular docking and rapid tomogram annotation.


Asunto(s)
Algoritmos , Tomografía con Microscopio Electrónico/métodos , Imagenología Tridimensional/métodos , Mitocondrias/ultraestructura , Simulación del Acoplamiento Molecular/métodos , Ribosomas/ultraestructura , Humanos
19.
Biochim Biophys Acta ; 1857(8): 1191-1196, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26968896

RESUMEN

The mitochondrial permeability transition is an inner mitochondrial membrane event involving the opening of the permeability transition pore concomitant with a sudden efflux of matrix solutes and breakdown of membrane potential. The mitochondrial F(o)F(1) ATP synthase has been proposed as the molecular identity of the permeability transition pore. The likeliness of potential pore-forming sites in the mitochondrial F(o)F(1) ATP synthase is discussed and a new model, the death finger model, is described. In this model, movement of a p-side density that connects the lipid-plug of the c-ring with the distal membrane bending Fo domain allows reversible opening of the c-ring and structural cross-talk with OSCP and the catalytic (αß)(3) hexamer. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Asunto(s)
Mitocondrias/química , Proteínas de Transporte de Membrana Mitocondrial/química , ATPasas de Translocación de Protón Mitocondriales/química , Animales , Artemia/química , Artemia/enzimología , Dominio Catalítico , Peptidil-Prolil Isomerasa F , Ciclofilinas/química , Ciclosporina/química , Drosophila melanogaster/química , Drosophila melanogaster/enzimología , Humanos , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Imitación Molecular , Multimerización de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología
20.
Microscopy (Oxf) ; 65(3): 263-7, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26754561

RESUMEN

Mitochondrial cytochrome c oxidase utilizes electrons provided by cytochrome c for the active vectorial transport of protons across the inner mitochondrial membrane through the reduction of molecular oxygen to water. Direct structural evidence on the transient cytochrome c oxidase-cytochrome c complex thus far, however, remains elusive and its physiological relevant oligomeric form is unclear. Here, we report on the 2D crystallization of monomeric bovine cytochrome c oxidase with tightly bound cytochrome c at a molar ratio of 1:1 in reconstituted lipid membranes at the basic pH of 8.5 and low ionic strength.


Asunto(s)
Citocromos c/química , Complejo IV de Transporte de Electrones/química , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Bovinos , Cristalización , Cristalografía por Rayos X , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA