Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Diabetes Metab Res Rev ; 40(3): e3792, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38517704

RESUMEN

AIMS: Sulfatide is a chaperone for insulin manufacturing in beta cells. Here we explore whether the blood glucose values normally could be associated with this sphingolipid and especially two of its building enzymes CERS2 and CERS6. Both T1D and T2D have low blood sulfatide levels, and insulin resistance on beta cells at clinical diagnosis. Furthermore, we examined islet pericytes for sulfatide, and beta-cell receptors for GLP-1, both of which are related to the insulin production. MATERIALS AND METHODS: We examined mRNA levels in islets from the DiViD and nPOD studies, performed genetic association analyses, and histologically investigated pericytes in the islets for sulfatide. RESULTS: Polymorphisms of the gene encoding the CERS6 enzyme responsible for synthesising dihydroceramide, a precursor to sulfatide, are associated with random blood glucose values in non-diabetic persons. This fits well with our finding of sulfatide in pericytes in the islets, which regulates the capillary blood flow in the islets of Langerhans, which is important for oxygen supply to insulin production. In the islets of newly diagnosed T1D patients, we observed low levels of GLP-1 receptors; this may explain the insulin resistance in their beta cells and their low insulin production. In T2D patients, we identified associated polymorphisms in both CERS2 and CERS6. CONCLUSIONS: Here, we describe several polymorphisms in sulfatide enzymes related to blood glucose levels and HbA1c in non-diabetic individuals. Islet pericytes from such persons contain sulfatide. Furthermore, low insulin secretion in newly diagnosed T1D may be explained by beta-cell insulin resistance due to low levels of GLP-1 receptors.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Islotes Pancreáticos , Humanos , Glucemia , Esfingolípidos , Resistencia a la Insulina/genética , Pericitos , Sulfoglicoesfingolípidos , Insulina , Insulina Regular Humana , Diabetes Mellitus Tipo 2/genética , Péptido 1 Similar al Glucagón , Glucosa
2.
Sci Rep ; 13(1): 12948, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558746

RESUMEN

Hypoglycemia in type 1 diabetes associates with changes in the pancreatic islet α cells, where the receptor for advanced glycation end products (RAGE) is highly expressed. This study compared islet RAGE expression in donors without diabetes, those at risk of, and those with type 1 diabetes. Laser-dissected islets were subject to RNA bioinformatics and adjacent pancreatic tissue were assessed by confocal microscopy. We found that islets from type 1 diabetes donors had differential expression of the RAGE gene (AGER) and its correlated genes, based on glucagon expression. Random forest machine learning revealed that AGER was the most important predictor for islet glucagon levels. Conversely, a generalized linear model identified that glucagon expression could be predicted by expression of RAGE signaling molecules, its ligands and enzymes that create or clear RAGE ligands. Confocal imaging co-localized RAGE, its ligands and signaling molecules to the α cells. Half of the type 1 diabetes cohort comprised of adolescents and a patient with history of hypoglycemia-all showed an inverse relationship between glucagon and RAGE. These data confirm an association between glucagon and islet RAGE, its ligands and signaling pathways in type 1 diabetes, which warrants functional investigation into a role for RAGE in hypoglycemia.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Glucagón , Hipoglucemia , Receptor para Productos Finales de Glicación Avanzada , Adolescente , Humanos , Diabetes Mellitus Tipo 1/genética , Glucagón , Células Secretoras de Glucagón/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Ligandos , Receptor para Productos Finales de Glicación Avanzada/metabolismo
3.
Diabetes Metab Res Rev ; 39(7): e3678, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37395313

RESUMEN

AIMS: To investigate if HLA risk haplotypes and HbA1c levels are associated with the expression levels of innate anti-viral immune pathway genes in type 1 diabetes. MATERIALS AND METHODS: We investigated RNA expression levels of innate anti-viral immune pathway genes in laser-dissected islets from two to five tissue sections per donor from the Diabetes Virus Detection study and the network of Pancreatic Organ Donors in relation to HLA risk haplotypes (non-predisposed and predisposed) and HbA1c levels (normal, elevated, and high). RESULTS: The expression of innate anti-viral immune genes (TLR7, OAS1, OAS3 etc.) was significantly increased in individuals with predisposing vs non-predisposing HLA haplotypes. Also, the expression of several of the innate anti-viral immune genes from the HLA risk haplotype analysis was significantly increased in the group with high vs normal HbA1c. Furthermore, the gene expression of OAS2 was significantly increased in the group with high HbA1c vs elevated HbA1c. CONCLUSIONS: Expression of innate anti-viral immune pathway genes was increased in individuals with predisposing HLA risk haplotypes and those with high HbA1c. This indicates that type 1 diabetes might well begin with alterations in innate anti-viral immunity, and already at this stage be associated with HLA risk haplotypes.

4.
Sci Rep ; 12(1): 18149, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307540

RESUMEN

Type 1 diabetes (T1D) incidence is increased after COVID-19 infection in children under 18 years of age. Interferon-α-activated oligoadenylate synthetase and downstream RNAseL activation degrade pathogen RNA, but can also damage host RNA when RNAseL activity is poorly regulated. One such regulator is PDE12 which degrades 2'-5' oligoadenylate units, thereby decreasing RNAseL activity. We analyzed PDE12 expression in islets from non-diabetic donors, individuals with newly (median disease duration 35 days) and recently (5 years) diagnosed T1D, and individuals with type 2 diabetes (T2D). We also analyzed PDE12 single-nucleotide polymorphisms (SNPs) relative to T1D incidence. PDE12 expression was decreased in individuals with recently diagnosed T1D, in three of five individuals with newly diagnosed T1D, but not in individuals with T2D. Two rare PDE12 SNPs were found to have odds ratios of 1.80 and 1.74 for T1D development. We discuss whether decreased PDE12 expression after COVID-19 infection might be part of the up to 2.5-fold increase in T1D incidence.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Niño , Humanos , Adolescente , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , COVID-19/genética , Interferón-alfa , ARN
5.
Nat Commun ; 13(1): 4621, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941159

RESUMEN

Pancreatic ß-cells are prone to endoplasmic reticulum (ER) stress due to their role in insulin secretion. They require sustainable and efficient adaptive stress responses to cope with this stress. Whether episodes of chronic stress directly compromise ß-cell identity is unknown. We show here under reversible, chronic stress conditions ß-cells undergo transcriptional and translational reprogramming associated with impaired expression of regulators of ß-cell function and identity. Upon recovery from stress, ß-cells regain their identity and function, indicating a high degree of adaptive plasticity. Remarkably, while ß-cells show resilience to episodic ER stress, when episodes exceed a threshold, ß-cell identity is gradually lost. Single cell RNA-sequencing analysis of islets from type 1 diabetes patients indicates severe deregulation of the chronic stress-adaptation program and reveals novel biomarkers of diabetes progression. Our results suggest ß-cell adaptive exhaustion contributes to diabetes pathogenesis.


Asunto(s)
Plasticidad de la Célula , Células Secretoras de Insulina , Adaptación Fisiológica , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 881997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957810

RESUMEN

Aims/hypothesis: The Diabetes Virus Detection (DiViD) study has suggested the presence of low-grade enteroviral infection in pancreatic tissue collected from six of six live adult patients newly diagnosed with type 1 diabetes. The present study aimed to compare the gene and protein expression of selected virally induced pathogen recognition receptors and interferon stimulated genes in islets from these newly diagnosed type 1 diabetes (DiViD) subjects vs age-matched non-diabetic (ND) controls. Methods: RNA was extracted from laser-captured islets and Affymetrix Human Gene 2.0 ST arrays used to obtain gene expression profiles. Lists of differentially expressed genes were subjected to a data-mining pipeline searching for enrichment of canonical pathways, KEGG pathways, Gene Ontologies, transcription factor binding sites and other upstream regulators. In addition, the presence and localisation of specific viral response proteins (PKR, MxA and MDA5) were examined by combined immunofluorescent labelling in sections of pancreatic tissue. Results: The data analysis and data mining process revealed a significant enrichment of gene ontologies covering viral reproduction and infectious cycles; peptide translation, elongation and initiation, as well as oxidoreductase activity. Enrichment was identified in the KEGG pathways for oxidative phosphorylation; ribosomal and metabolic activity; antigen processing and presentation and in canonical pathways for mitochondrial dysfunction, oxidative phosphorylation and EIF2 signaling. Protein Kinase R (PKR) expression did not differ between newly diagnosed type 1 diabetes and ND islets at the level of total RNA, but a small subset of ß-cells displayed markedly increased PKR protein levels. These PKR+ ß-cells correspond to those previously shown to contain the viral protein, VP1. RNA encoding MDA5 was increased significantly in newly diagnosed type 1 diabetes islets, and immunostaining of MDA5 protein was seen in α- and certain ß-cells in both newly diagnosed type 1 diabetes and ND islets, but the expression was increased in ß-cells in type 1 diabetes. In addition, an uncharacterised subset of synaptophysin positive, but islet hormone negative, cells expressed intense MDA5 staining and these were more prevalent in DiViD cases. MxA RNA was upregulated in newly diagnosed type 1 diabetes vs ND islets and MxA protein was detected exclusively in newly diagnosed type 1 diabetes ß-cells. Conclusion/interpretation: The gene expression signatures reveal that pathways associated with cellular stress and increased immunological activity are enhanced in islets from newly diagnosed type 1 diabetes patients compared to controls. The increases in viral response proteins seen in ß-cells in newly diagnosed type 1 diabetes provide clear evidence for the activation of IFN signalling pathways. As such, these data strengthen the hypothesis that an enteroviral infection of islet ß-cells contributes to the pathogenesis of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Islotes Pancreáticos , Adulto , Antivirales , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , ARN
7.
Front Endocrinol (Lausanne) ; 13: 861985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498413

RESUMEN

Although type 1 diabetes (T1D) is primarily a disease of the pancreatic beta-cells, understanding of the disease-associated alterations in the whole pancreas could be important for the improved treatment or the prevention of the disease. We have characterized the whole-pancreas gene expression of patients with recently diagnosed T1D from the Diabetes Virus Detection (DiViD) study and non-diabetic controls. Furthermore, another parallel dataset of the whole pancreas and an additional dataset from the laser-captured pancreatic islets of the DiViD patients and non-diabetic organ donors were analyzed together with the original dataset to confirm the results and to get further insights into the potential disease-associated differences between the exocrine and the endocrine pancreas. First, higher expression of the core acinar cell genes, encoding for digestive enzymes, was detected in the whole pancreas of the DiViD patients when compared to non-diabetic controls. Second, In the pancreatic islets, upregulation of immune and inflammation related genes was observed in the DiViD patients when compared to non-diabetic controls, in line with earlier publications, while an opposite trend was observed for several immune and inflammation related genes at the whole pancreas tissue level. Third, strong downregulation of the regenerating gene family (REG) genes, linked to pancreatic islet growth and regeneration, was observed in the exocrine acinar cell dominated whole-pancreas data of the DiViD patients when compared with the non-diabetic controls. Fourth, analysis of unique features in the transcriptomes of each DiViD patient compared with the other DiViD patients, revealed elevated expression of central antiviral immune response genes in the whole-pancreas samples, but not in the pancreatic islets, of one DiViD patient. This difference in the extent of antiviral gene expression suggests different statuses of infection in the pancreas at the time of sampling between the DiViD patients, who were all enterovirus VP1+ in the islets by immunohistochemistry based on earlier studies. The observed features, indicating differences in the function, status and interplay between the exocrine and the endocrine pancreas of recent onset T1D patients, highlight the importance of studying both compartments for better understanding of the molecular mechanisms of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Páncreas Exocrino , Antivirales , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Inflamación/metabolismo , Páncreas/metabolismo , Transcriptoma
8.
Nat Commun ; 13(1): 684, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115561

RESUMEN

Loss of pancreatic beta cells is a central feature of type 1 (T1D) and type 2 (T2D) diabetes, but a therapeutic strategy to preserve beta cell mass remains to be established. Here we show that the death receptor TMEM219 is expressed on pancreatic beta cells and that signaling through its ligand insulin-like growth factor binding protein 3 (IGFBP3) leads to beta cell loss and dysfunction. Increased peripheral IGFBP3 was observed in established and at-risk T1D/T2D patients and was confirmed in T1D/T2D preclinical models, suggesting that dysfunctional IGFBP3/TMEM219 signaling is associated with abnormalities in beta cells homeostasis. In vitro and in vivo short-term IGFBP3/TMEM219 inhibition and TMEM219 genetic ablation preserved beta cells and prevented/delayed diabetes onset, while long-term IGFBP3/TMEM219 blockade allowed for beta cell expansion. Interestingly, in several patients' cohorts restoration of appropriate IGFBP3 levels was associated with improved beta cell function. The IGFBP3/TMEM219 pathway is thus shown to be a physiological regulator of beta cell homeostasis and is also demonstrated to be disrupted in T1D/T2D. IGFBP3/TMEM219 targeting may therefore serve as a therapeutic option in diabetes.


Asunto(s)
Regulación de la Expresión Génica , Homeostasis/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/genética , Transducción de Señal/genética , Adulto , Animales , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Humanos , Immunoblotting , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Front Endocrinol (Lausanne) ; 13: 1032822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589856

RESUMEN

Background: At diagnosis of Type 1 Diabetes (T1D), 30% of the beta cells are dormant, i.e. alive, but inactive. This could reduce beta cell destruction, as cellular stress contributes to beta cell damage. However, the beta cells, that are still active, must produce more insulin and are therefore more vulnerable. The inactive beta cells represent a potential for restoring the insulin secretion. Methods: We analyzed the expression of selected genes in islets from live, newly diagnosed T1D patients from the DiViD study and organ doners with longer duration of T1D, type 2 diabetes (T2D), or no diabetes from the nPOD study. Additionally, analysis of polymorphisms was performed on all the investigated genes. Findings: Various possibilities were considered for the inactivity of the beta cells: secretion defect, fetal state, hibernation, and insulin resistance. We analyzed genes related to the ceramide and sphingomyelin synthesis and degradation, secretion, circadian rhythm and insulin action, and found changes in T1D islets that resemble fetal dedifferentiation and asynchrony. Furthermore, we found low levels of insulin receptor mRNA in the islets. No polymorphisms were found. Interpretation: Our findings suggest a secretion defect, but also fetal dedifferentiation and desynchronization in the inactive beta cells. Together with previous evidence, that predisposing factors for T2D are also present for T1D development, we raise the idea to treat individuals with ongoing T1D development prophylactically with T2D medicine like GLP-1 receptor agonists, metformin, or others, combined with anti-inflammatory compounds, in order to reactivate the dormant beta cells, and to prevent autoimmune destruction. T2D mechanisms during T1D development should be investigated further.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
11.
Diabetologia ; 64(8): 1805-1815, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33973017

RESUMEN

AIMS/HYPOTHESIS: The incidence of type 1 diabetes is increasing more rapidly than can be explained by genetic drift. Viruses may play an important role in the disease, as they seem to activate the 2'-5'-linked oligoadenylate (2'-5'A) pathway of the innate antiviral immune system. Our aim was to investigate this possibility. METHODS: Innate antiviral immune pathways were searched for type 1 diabetes-associated polymorphisms using genome-wide association study data. SNPs within ±250kb flanking regions of the transcription start site of 64 genes were examined. These pathways were also investigated for type 1 diabetes-associated RNA expression profiles using laser-dissected islets from two to five tissue sections per donor from the Diabetes Virus Detection (DiViD) study and the network of Pancreatic Organ Donors (nPOD). RESULTS: We found 27 novel SNPs in genes nominally associated with type 1 diabetes. Three of those SNPs were located upstream of the 2'-5'A pathway, namely SNP rs4767000 (p = 1.03 × 10-9, OR 1.123), rs1034687 (p = 2.16 × 10-7, OR 0.869) and rs739744 (p = 1.03 × 10-9, OR 1.123). We also identified a large group of dysregulated islet genes in relation to type 1 diabetes, of which two were novel. The most aberrant genes were a group of IFN-stimulated genes. Of those, the following distinct pathways were targeted by the dysregulation (compared with the non-diabetic control group): OAS1 increased by 111% (p < 1.00 × 10-4, 95% CI -0.43, -0.15); MX1 increased by 142% (p < 1.00 × 10-4, 95% CI -0.52, -0.22); and ISG15 increased by 197% (p = 2.00 × 10-4, 95% CI -0.68, -0.18). CONCLUSIONS/INTERPRETATION: We identified a genetic predisposition in the 2'-5'A pathway that potentially contributes to dysregulation of the innate antiviral immune system in type 1 diabetes. This study describes a potential role for the 2'-5'A pathway and other components of the innate antiviral immune system in beta cell autoimmunity.


Asunto(s)
Nucleótidos de Adenina/genética , Diabetes Mellitus Tipo 1/genética , Regulación de la Expresión Génica/fisiología , Predisposición Genética a la Enfermedad , Inmunidad Innata/genética , Oligorribonucleótidos/genética , Polimorfismo de Nucleótido Simple/genética , Virosis/inmunología , Adulto , Antivirales/uso terapéutico , Diabetes Mellitus Tipo 1/virología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Virosis/tratamiento farmacológico , Adulto Joven
12.
Sci Rep ; 11(1): 6562, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753784

RESUMEN

Dysregulation of glucagon secretion in type 1 diabetes (T1D) involves hypersecretion during postprandial states, but insufficient secretion during hypoglycemia. The sympathetic nervous system regulates glucagon secretion. To investigate islet sympathetic innervation in T1D, sympathetic tyrosine hydroxylase (TH) axons were analyzed in control non-diabetic organ donors, non-diabetic islet autoantibody-positive individuals (AAb), and age-matched persons with T1D. Islet TH axon numbers and density were significantly decreased in AAb compared to T1D with no significant differences observed in exocrine TH axon volume or lengths between groups. TH axons were in close approximation to islet α-cells in T1D individuals with long-standing diabetes. Islet RNA-sequencing and qRT-PCR analyses identified significant alterations in noradrenalin degradation, α-adrenergic signaling, cardiac ß-adrenergic signaling, catecholamine biosynthesis, and additional neuropathology pathways. The close approximation of TH axons at islet α-cells supports a model for sympathetic efferent neurons directly regulating glucagon secretion. Sympathetic islet innervation and intrinsic adrenergic signaling pathways could be novel targets for improving glucagon secretion in T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/etiología , Susceptibilidad a Enfermedades , Islotes Pancreáticos/inervación , Sistema Nervioso Simpático/fisiopatología , Axones/metabolismo , Biomarcadores , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Células Secretoras de Glucagón/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Páncreas Exocrino/inervación , Páncreas Exocrino/metabolismo , Células Secretoras de Somatostatina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
13.
Sci Adv ; 7(9)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627420

RESUMEN

Previous results indicate the presence of an interferon (IFN) signature in type 1 diabetes (T1D), capable of inducing chronic inflammation and compromising b cell function. Here, we determined the expression of the IFN response markers MxA, PKR, and HLA-I in the islets of autoantibody-positive and T1D donors. We found that these markers can be coexpressed in the same islet, are more abundant in insulin-containing islets, are highly expressed in islets with insulitis, and their expression levels are correlated with the presence of the enteroviral protein VP1. The expression of these markers was associated with down-regulation of multiple genes in the insulin secretion pathway. The coexistence of an IFN response and a microbial stress response is likely to prime islets for immune destruction. This study highlights the importance of therapeutic interventions aimed at eliminating potentially persistent infections and diminishing inflammation in individuals with T1D.

14.
Diabetes ; 69(8): 1749-1762, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32535552

RESUMEN

NKG2D is implicated in autoimmune diabetes. However, the role of this receptor in diabetes pathogenesis is unclear owing to conflicting results with studies involving global inhibition of NKG2D signaling. We found that NKG2D and its ligands are present in human pancreata, with expression of NKG2D and its ligands increased in the islets of patients with type 1 diabetes. To directly assess the role of NKG2D in the pancreas, we generated NOD mice that express an NKG2D ligand in ß-islet cells. Diabetes was reduced in these mice. The reduction corresponded with a decrease in the effector to central memory CD8+ T-cell ratio. Further, NKG2D signaling during in vitro activation of both mouse and human CD8+ T cells resulted in an increased number of central memory CD8+ T cells and diabetes protection by central memory CD8+ T cells in vivo. Taken together, these studies demonstrate that there is a protective role for central memory CD8+ T cells in autoimmune diabetes and that this protection is enhanced with NKG2D signaling. These findings stress the importance of anatomical location when determining the role NKG2D signaling plays, as well as when developing therapeutic strategies targeting this pathway, in type 1 diabetes development.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Islotes Pancreáticos/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Alelos , Animales , Citometría de Flujo , Humanos , Islotes Pancreáticos/citología , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Ratas , Transducción de Señal/fisiología
15.
Mass Spectrom Rev ; 39(5-6): 452, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31663637
16.
Curr Diab Rep ; 19(12): 159, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31820163

RESUMEN

PURPOSE OF REVIEW: Hyperexpression of classical HLA class I (HLA-I) molecules in insulin-containing islets has become a widely accepted hallmark of type 1 diabetes pathology. In comparison, relatively little is known about the expression, function and role of non-classical subtypes of HLA-I. This review focuses on the current understanding of the non-classical HLA-I subtypes: HLA-E, HLA-F and HLA-G, within and outside the field of type 1 diabetes, and considers the possible impacts of these molecules on disease etiology. RECENT FINDINGS: Evidence is growing to suggest that non-classical HLA-I proteins are upregulated, both at the RNA and protein levels in the pancreas of individuals with recent-onset type 1 diabetes. Moreover, associations between non-classical HLA-I genotypes and age at onset of type 1 diabetes have been reported in some studies. As with classical HLA-I, it is likely that hyperexpression of non-classical HLA-I is driven by the release of diffusible interferons by stressed ß cells (potentially driven by viral infection) and exacerbated by release of cytokines from infiltrating immune cells. Non-classical HLA-I proteins predominantly (but not exclusively) transduce negative signals to immune cells infiltrating at the site of injury/inflammation. We propose a model in which the islet endocrine cells, through expression of non-classical HLA-I are fighting back against the infiltrating immune cells. By inhibiting the activity and function on NK, B and select T cells, the non-classical HLA-I, proteins will reduce the non-specific bystander effects of inflammation, while at the same time still allowing the targeted destruction of ß cells by specific islet-reactive CD8+ T cells.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Antígenos de Histocompatibilidad Clase I/biosíntesis , Antígenos de Histocompatibilidad Clase I/inmunología , Islotes Pancreáticos/inmunología , Linfocitos B/inmunología , Antígenos CD8/inmunología , Diabetes Mellitus Tipo 1/fisiopatología , Antígenos HLA-G/biosíntesis , Humanos , Inflamación/inmunología , Células Secretoras de Insulina/inmunología , Islotes Pancreáticos/fisiopatología , Células Asesinas Naturales/inmunología , Linfocitos T/inmunología , Regulación hacia Arriba , Antígenos HLA-E
17.
J Clin Transl Endocrinol ; 17: 100199, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31293900

RESUMEN

Peripheral arterial disease is characterized by impaired blood flow to tissues outside the heart due to atherosclerosis and it most frequently occurs in the lower extremities. Type 2 diabetes (T2D) is a well-known risk factor that accelerate the course and contributes to poor clinical outcomes of PAD. While there is some evidence that T2D is associated with altered expression of genes involved in regulating PAD severity, our knowledge about the specific genes and pathways involved remains incomplete. We induced experimental PAD or hind limb ischemia in T2D and non-diabetic mice and subjected the ischemic gastrocnemius muscle tissues to genome-wide mRNA transcriptome analysis. We subsequently performed pathway analysis on the top 500 genes that showed the most significant expression differences between the ischemic diabetic and ischemic non-diabetic muscle tissues. Pathway analysis of the differentially expressed genes identified pathways involved in essential biological processes such as "metabolic pathways," "phagosomes," "lysosomes," and "regulation of actin cytoskeleton". Overall, our data provides the opportunity to test hypotheses on the potential role of the altered genes/molecular pathways in poor PAD outcomes in diabetes.

18.
J Clin Transl Endocrinol ; 15: 19-24, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30555789

RESUMEN

Peripheral Artery Disease (PAD) is a chronic, activity-limiting disease that is caused by atherosclerotic occlusion of blood vessels outside the heart. Type 1 Diabetes (T1D) not only increases an individual's likelihood of developing PAD, but also contributes to poor clinical outcomes after PAD manifestation. Although there is some evidence suggesting that hyperglycemia might alter expression of genes involved in regulating PAD severity or outcomes, our knowledge about the specific genes and pathways involved remains incomplete. We induced experimental PAD or hind limb ischemia in T1D and non-diabetic mice and subjected the ischemic gastrocnemius muscle tissues to genome-wide mRNA transcriptome and pathway analysis. We identified 513 probe sets that represented 443 different genes with highly significant expression differences (p < 0.005) between the ischemic diabetic and ischemic non-diabetic muscle tissues. Moreover, pathway analysis of the differentially expressed genes identified pathways involved in essential biological processes such as "cell cycle," "DNA replication," "metabolic pathways," "focal adhesion," "regulation of actin cytoskeleton," and "nucleotide excision repair". Taken together, our data offer the opportunity to test hypotheses on the roles played by the altered genes/molecular pathways in poor PAD outcomes in diabetes. Such studies may lead to the development of specific therapies to improve PAD outcomes in patients with comorbid diabetes.

19.
Diabetologia ; 61(7): 1650-1661, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29671030

RESUMEN

AIMS/HYPOTHESIS: Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. METHODS: We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. RESULTS: We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. CONCLUSIONS/INTERPRETATION: These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. DATA AVAILABILITY: The RNA expression data is available online at https://www.dropbox.com/s/93mk5tzl5fdyo6b/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%2C%20RNA%20expression.xlsx?dl=0 . A list of SNPs identified is available at https://www.dropbox.com/s/yfojma9xanpp2ju/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%20SNP.xlsx?dl=0 .


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , Sulfoglicoesfingolípidos/metabolismo , Adulto , Animales , Autoinmunidad , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/prevención & control , Modelos Animales de Enfermedad , Femenino , Fenofibrato/farmacología , Regulación Enzimológica de la Expresión Génica , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/ultraestructura , Metabolismo de los Lípidos/genética , Activación de Linfocitos , Masculino , Ratones Endogámicos NOD , Polimorfismo Genético , Linfocitos T/inmunología , Linfocitos T/metabolismo
20.
PLoS One ; 12(9): e0183908, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28877242

RESUMEN

Type 1 diabetes (T1D) is a chronic inflammatory disease that is characterized by autoimmune destruction of insulin-producing pancreatic beta cells. The goal of this study was to identify novel protein signatures that distinguish Islets from patients with T1D, patients who are autoantibody positive without symptoms of diabetes, and from individuals with no evidence of disease. High resolution high mass accuracy label free quantitative mass spectrometry analysis was applied to islets isolated by laser capture microdissection from disease stratified human pancreata from the Network for Pancreatic Organ Donors with Diabetes (nPOD), these included donors without diabetes, donors with T1D-associated autoantibodies in the absence of diabetes, and donors with T1D. Thirty-nine proteins were found to be differentially regulated in autoantibody positive cases compared to the no-disease group, with 25 upregulated and 14 downregulated proteins. For the T1D cases, 63 proteins were differentially expressed, with 24 upregulated and 39 downregulated, compared to the no disease controls. We have identified functional annotated enriched gene families and multiple protein-protein interaction clusters of proteins are involved in biological and molecular processes that may have a role in T1D. The proteins that are upregulated in T1D cases include S100A9, S100A8, REG1B, REG3A and C9 amongst others. These proteins have important biological functions, such as inflammation, metabolic regulation, and autoimmunity, all of which are pathways linked to the pathogenesis of T1D. The identified proteins may be involved in T1D development and pathogenesis. Our findings of novel proteins uniquely upregulated in T1D pancreas provides impetus for further investigations focusing on their expression profiles in beta cells/ islets to evaluate their role in the disease pathogenesis. Some of these molecules may be novel therapeutic targets T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , Adulto , Niño , Cromatografía Liquida , Diabetes Mellitus Tipo 1/etiología , Femenino , Humanos , Captura por Microdisección con Láser , Masculino , Espectrometría de Masas , Redes y Vías Metabólicas , Microscopía Confocal , Microscopía Fluorescente , Proteínas Asociadas a Pancreatitis , Dominios y Motivos de Interacción de Proteínas , Proteómica/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA