Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 353: 120154, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38308992

RESUMEN

Fuel-treatments targeting shrubs and fire-prone exotic annual grasses (EAGs) are increasingly used to mitigate increased wildfire risks in arid and semiarid environments, and understanding their response to natural factors is needed for effective landscape management. Using field-data collected over four years from fuel-break treatments in semiarid sagebrush-steppe, we asked 1) how the outcomes of EAG and sagebrush fuel treatments varied with site biophysical properties, climate, and weather, and 2) how predictions of fire behavior using the Fuel Characteristic Classification System fire model related to land-management objectives of maintaining fire behavior expected of low-load, dry-climate grasslands. Generalized linear mixed effect modeling with build-up model selection was used to determine best-fit models, and marginal effects plots to assess responses for each fuel type. EAG cover decreased as antecedent-fall precipitation increased and increased as antecedent-spring temperatures and surface soil clay contents increased. Herbicides targeting EAGs were less effective where pre-treatment EAG cover was >40 % and antecedent spring temperatures were >9.5 °C. Sagebrush cover was inversely related to soil clay content, especially where clay contents were >17 %. Predicted fire behavior exceeded management objectives under 1) average fire weather conditions when EAG or sagebrush cover was >50 % or >26 %, respectively, or 2) extreme fire weather conditions when EAG or sagebrush cover was >10 % or >8 %, respectively. Consideration of the strong effects of natural variability in site properties and antecedent weather can help in justifying, planning and implementing fuel-treatments.


Asunto(s)
Artemisia , Incendios , Ecosistema , Arcilla , Tiempo (Meteorología) , Suelo , Poaceae
2.
Ecol Evol ; 12(12): e9630, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36532138

RESUMEN

Field-based transplant gardens, including common and reciprocal garden experiments, are a powerful tool for studying genetic variation and gene-by-environment interactions. These experiments assume that individuals within the garden represent independent replicates growing in a homogenous environment. Plant neighborhood interactions are pervasive across plant populations and could violate assumptions of transplant garden experiments. We demonstrate how spatially explicit models for plant-plant interactions can provide novel insights on genotypes' performance in field-transplant garden designs. We used individual-based models, based on data from a sagebrush (Artemisia spp.) common garden, to simulate the impact of spatial plant-plant interactions on between-group differences in plant growth. We found that planting densities within the range of those used in many common gardens can bias experimental outcomes. Our results demonstrate that higher planting densities can lead to inflated group differences and may confound genotypes' competitive ability and genetically underpinned variation. Synthesis. We propose that spatially explicit models can help avoid biased results by informing the design and analysis of field-based transplant garden experiments. Alternately, including neighborhood effects in post hoc analyses of transplant garden experiments is likely to provide novel insights into the roles of biotic factors and density dependence in genetic differentiation.


Los experimentos de trasplante de especies en parcelas de campo experimentales, tanto bajo condiciones ambientales comunes ("common gardens") como diferentes ("reciprocal gardens"), son una poderosa herramienta que permite estudiar la variación genética y la interacción entre el genoma y el medio ambiente. Dichos experimentos asumen que los individuos dentro de una misma parcela representan réplicas independientes creciendo bajo condiciones ambientales homogéneas. Las interacciones entre plantas vecinas están omnipresentes en las dinámicas poblaciones y pueden suponer una violación de dichas asunciones. Sin embargo, enfoques cuantitativos que permitan evaluar la adecuación del diseño experimental son escasos. Nosotros demostramos cómo los modelos espacialmente explícitos para las interacciones planta­planta pueden proporcionar nuevos hallazgos sobre el rendimiento genotípico en el diseño de experimentos de trasplante. Utilizamos modelos basados en individuos, junto con datos de "artemisa" (Artemisia spp.) procedentes de un "common garden," para simular el impacto de las interacciones planta­planta sobre las diferencias de crecimiento entre grupos. Encontramos que la densidad de siembra utilizada con frecuencia en muchos "common gardens" puede sesgar la estimación de la variación entre grupos. Nuestros resultados demuestran que una mayor densidad de siembra puede inflar las diferencias entre grupos, confundir la habilidad competitiva de los genomas y la variabilidad sustentada genéticamente, introduciendo así un sesgo en el experimento. Proponemos que los modelos espacialmente explícitos pueden ayudar a evitar el sesgo en los resultados mediante el apoyo en el diseño y análisis de experimentos de trasplante. Incluir efectos de vecindad en el análisis a posteriori de experimentos puede proporcionar nuevos hallazgos sobre el papel de los factores bióticos y densidad­dependientes en la diferenciación genética.

3.
AoB Plants ; 14(6): plac045, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36380819

RESUMEN

Plant-population recovery across large disturbance areas is often seed-limited. An understanding of seed dispersal patterns is fundamental for determining natural-regeneration potential. However, forecasting seed dispersal rates across heterogeneous landscapes remains a challenge. Our objectives were to determine (i) the landscape patterning of post-disturbance seed dispersal, and underlying sources of variation and the scale at which they operate, and (ii) how the natural seed dispersal patterns relate to a seed augmentation strategy. Vertical seed trapping experiments were replicated across 2 years and five burned and/or managed landscapes in sagebrush steppe. Multi-scale sampling and hierarchical Bayesian models were used to determine the scale of spatial variation in seed dispersal. We then integrated an empirical and mechanistic dispersal kernel for wind-dispersed species to project rates of seed dispersal and compared natural seed arrival to typical post-fire aerial seeding rates. Seeds were captured across the range of tested dispersal distances, up to a maximum distance of 26 m from seed-source plants, although dispersal to the furthest traps was variable. Seed dispersal was better explained by transect heterogeneity than by patch or site heterogeneity (transects were nested within patch within site). The number of seeds captured varied from a modelled mean of ~13 m-2 adjacent to patches of seed-producing plants, to nearly none at 10 m from patches, standardized over a 49-day period. Maximum seed dispersal distances on average were estimated to be 16 m according to a novel modelling approach using a 'latent' variable for dispersal distance based on seed trapping heights. Surprisingly, statistical representation of wind did not improve model fit and seed rain was not related to the large variation in total available seed of adjacent patches. The models predicted severe seed limitations were likely on typical burned areas, especially compared to the mean 95-250 seeds per m2 that previous literature suggested were required to generate sagebrush recovery. More broadly, our Bayesian data fusion approach could be applied to other cases that require quantitative estimates of long-distance seed dispersal across heterogeneous landscapes.

4.
Nat Commun ; 13(1): 3472, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710763

RESUMEN

Accurate predictions of ecological restoration outcomes are needed across the increasingly large landscapes requiring treatment following disturbances. However, observational studies often fail to account for nonrandom treatment application, which can result in invalid inference. Examining a spatiotemporally extensive management treatment involving post-fire seeding of declining sagebrush shrubs across semiarid areas of the western USA over two decades, we quantify drivers and consequences of selection biases in restoration using remotely sensed data. From following more than 1,500 wildfires, we find treatments were disproportionately applied in more stressful, degraded ecological conditions. Failure to incorporate unmeasured drivers of treatment allocation led to the conclusion that costly, widespread seedings were unsuccessful; however, after considering sources of bias, restoration positively affected sagebrush recovery. Treatment effects varied with climate, indicating prioritization criteria for interventions. Our findings revise the perspective that post-fire sagebrush seedings have been broadly unsuccessful and demonstrate how selection biases can pose substantive inferential hazards in observational studies of restoration efficacy and the development of restoration theory.


Asunto(s)
Artemisia , Incendios , Incendios Forestales , Ecosistema , Bosques
5.
Ecol Evol ; 12(3): e8671, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35356585

RESUMEN

Habitat loss is the most prevalent threat to biodiversity in North America. One of the most threatened landscapes in the United States is the sagebrush (Artemisia spp.) ecosystem, much of which has been fragmented or converted to non-native grasslands via the cheatgrass-fire cycle. Like many sagebrush obligates, greater sage-grouse (Centrocercus urophasianus) depend upon sagebrush for food and cover and are affected by changes to this ecosystem. We investigated habitat selection by 28 male greater sage-grouse during each of 3 years after a 113,000-ha wildfire in a sagebrush steppe ecosystem in Idaho and Oregon. During the study period, seeding and herbicide treatments were applied for habitat restoration. We evaluated sage-grouse responses to vegetation and post-fire restoration treatments. Throughout the 3 years post-fire, sage-grouse avoided areas with high exotic annual grass cover but selected strongly for recovering sagebrush and moderately strongly for perennial grasses. By the third year post-fire, they preferred high-density sagebrush, especially in winter when sagebrush is the primary component of the sage-grouse diet. Sage-grouse preferred forb habitat immediately post-fire, especially in summer, but this selection preference was less strong in later years. They also selected areas that were intensively treated with herbicide and seeded with sagebrush, grasses, and forbs, although these responses varied with time since treatment. Wildfire can have severe consequences for sagebrush-obligate species due to loss of large sagebrush plants used for food and for protection from predators and thermal extremes. Our results show that management efforts, including herbicide application and seeding of plants, directed at controlling exotic annual grasses after a wildfire can positively affect habitat selection by sage-grouse.

6.
Am J Bot ; 108(8): 1405-1416, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460105

RESUMEN

PREMISE: Adaptive traits can be dramatically altered by genome duplication. The study of interactions among traits, ploidy, and the environment are necessary to develop an understanding of how polyploidy affects niche differentiation and to develop restoration strategies for resilient native ecosystems. METHODS: Growth and fecundity were measured in common gardens for 39 populations of big sagebrush (Artemisia tridentata) containing two subspecies and two ploidy levels. General linear mixed-effect models assessed how much of the trait variation could be attributed to genetics (i.e., ploidy and climatic adaptation), environment, and gene-environment interactions. RESULTS: Growth and fecundity variation were explained well by the mixed models (80% and 91%, respectively). Much of the trait variation was attributed to environment, and 15% of variation in growth and 34% of variation in seed yield were attributed to genetics. Genetic trait variation was mostly attributable to ploidy, with much higher growth and seed production in diploids, even in a warm-dry environment typically dominated by tetraploids. Population-level genetic variation was also evident and was related to the climate of each population's origin. CONCLUSIONS: Ploidy is a strong predictor growth and seed yield, regardless of common-garden environment. The superior growth and fecundity of diploids across environments raises the question as to how tetraploids can be more prevalent than diploids, especially in warm-dry environments. Two hypotheses that may explain the abundance of tetraploids on the landscape include selection for drought resistance at the seedling stage, and greater competitive ability in water uptake in the upper soil horizon.


Asunto(s)
Artemisia , Ecosistema , Clima , Fertilidad/genética , Duplicación de Gen , Poliploidía
7.
Ecology ; 102(11): e03502, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314039

RESUMEN

Interactions between neighboring plants are critical for biodiversity maintenance in plant populations and communities. Intraspecific trait variation and genome duplication are common in plant species and can drive eco-evolutionary dynamics through genotype-mediated plant-plant interactions. However, few studies have examined how species-wide intraspecific variation may alter interactions between neighboring plants. We investigate how subspecies and ploidy variation in a genetically diverse species, big sagebrush (Artemisia tridentata), can alter the demographic outcomes of plant interactions. Using a replicated, long-term common garden experiment that represents range-wide diversity of A. tridentata, we ask how intraspecific variation, environment, and stand age mediate neighbor effects on plant growth and survival. Spatially explicit models revealed that ploidy variation and subspecies identity can mediate plant-plant interactions but that the effect size varied in time and across experimental sites. We found that demographic impacts of neighbor effects were strongest during early stages of stand development and in sites with greater growth rates. Within subspecies, tetraploid populations showed greater tolerance to neighbor crowding compared to their diploid variants. Our findings provide evidence that intraspecific variation related to genome size and subspecies identity impacts spatial demography in a genetically diverse plant species. Accounting for intraspecific variation in studies of conspecific density dependence will improve our understanding of how local populations will respond to novel genotypes and biotic interaction regimes. As introduction of novel genotypes into local populations becomes more common, quantifying demographic processes in genetically diverse populations will help predict long-term consequences of plant-plant interactions.


Asunto(s)
Artemisia , Biodiversidad , Genotipo , Fenotipo
9.
Ecol Evol ; 10(18): 9920-9931, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005354

RESUMEN

Adaptive variation among plant populations must be known for effective conservation and restoration of imperiled species and predicting their responses to a changing climate. Common-garden experiments, in which plants sourced from geographically distant populations are grown together such that genetic differences may be expressed, have provided much insight on adaptive variation. Common-garden experiments also form the foundation for climate-based seed-transfer guidelines. However, the spatial scale at which population differentiation occurs is rarely addressed, leaving a critical information gap for parameterizing seed-transfer guidelines and assessing species' climate vulnerability. We asked whether adaptation was evident among populations of a foundational perennial within a single "empirical" seed-transfer zone (based on previous common-garden findings evaluating very distant populations) but different "provisional" seed zones (groupings of areas of similar climate and are not parameterized from common-garden data). Seedlings from three populations originating from similar conditions within an intermediate elevation were planted into gardens nearby at the same elevation, or 250-450 m higher or lower in elevation and 0.4-25 km away. Substantial variation was observed between gardens in survival (ranging 2%-99%), foliar crown volume (7.8-22.6 dm3), and reproductive effort (0%-65%), but not among the three transplanted populations. The between garden variation was inversely related to climatic differences between the gardens and seed-source populations, specifically the site differences in maximum-minimum annual temperatures. Results suggest that substantial site-specificity in adaptation can occur at finer scales than is accounted for in empirical seed-transfer guidance when the guidance is derived from broadscale common-garden studies. Being within the same empirical seed zone, geographic unit, and even within 10 km distance may not qualify as "local" in the context of seed transfer. Moving forward, designing common-garden experiments so that they allow for testing the scale of adaptation will help in translating the resulting seed-transfer guidance to restoration projects.

10.
Am J Bot ; 106(7): 922-934, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31294835

RESUMEN

PREMISE: Physiological responses to temperature extremes are considered strong drivers of species' demographic responses to climate variability. Plants are typically classified as either avoiders or tolerators in their freezing-resistance mechanism, but a gradient of physiological-threshold freezing responses may exist among individuals of a species. Moreover, adaptive significance of physiological freezing responses is poorly characterized, particularly under warming conditions that relax selection on cold hardiness. METHODS: Freezing responses were measured in winter and again for new foliage in spring for 14 populations of Artemisia tridentata collected throughout its range and planted in a warm common garden. The relationships of the freezing responses to survival were evaluated in the warm garden and in two colder gardens. RESULTS: Winter and spring freezing resistance were not correlated and appeared to be under differing selection regimes, as evident in correlations with different population climate of origin variables. All populations resisted considerably lower temperatures in winter than in spring, with populations from more continental climates showing narrower freezing safety margins (difference in temperatures at which ice-nucleation occurs and 50% reduction in chlorophyll fluorescence occurs) in spring. Populations with greater winter freezing resistance had lower survivorship in the warmest garden, while populations with greater spring freezing resistance had lower survivorship in a colder garden. CONCLUSIONS: These survivorship patterns relative to physiological thresholds suggest excess freezing resistance may incur a survival cost that likely relates to a trade-off between carbon gain and freezing resistance during critical periods of moisture availability. This cost has implications for seed moved from cooler to warmer environments and for plants growing in warming environments.


Asunto(s)
Artemisia/fisiología , Clima Frío , Congelación , Noroeste de Estados Unidos , Estaciones del Año , Sudoeste de Estados Unidos , Agua/fisiología
11.
Ecol Lett ; 22(9): 1357-1366, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31209981

RESUMEN

The apparent failure of ecosystems to recover from increasingly widespread disturbance is a global concern. Despite growing focus on factors inhibiting resilience and restoration, we still know very little about how demographic and population processes influence recovery. Using inverse and forward demographic modelling of 531 post-fire sagebrush populations across the western US, we show that demographic processes during recovery from seeds do not initially lead to population growth but rather to years of population decline, low density, and risk of extirpation after disturbance and restoration, even at sites with potential to support long-term, stable populations. Changes in population structure, and resulting transient population dynamics, lead to a > 50% decline in population growth rate after disturbance and significant reductions in population density. Our results indicate that demographic processes influence the recovery of ecosystems from disturbance and that demographic analyses can be used by resource managers to anticipate ecological transformation risk.


Asunto(s)
Artemisia/crecimiento & desarrollo , Ecosistema , Incendios , Modelos Biológicos , Densidad de Población , Dinámica Poblacional , Estados Unidos
12.
Ecol Appl ; 29(2): e01842, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30585672

RESUMEN

Population-level adaptation to spatial variation in factors such as climate and soils is critical for climate-vulnerability assessments, restoration seeding, and other ecological applications in species management, and the underlying information is typically based on common-garden studies that are short duration. Here, we show >20 yr were required for adaptive differences to emerge among 13 populations of a widespread shrub (sagebrush, Artemisia tridentata ssp wyomingensis) collected from around the western United States and planted into common gardens. Additionally, >10 yr were required for greater survival of local populations, that is, local adaptation, to become evident. Variation in survival was best explained by the combination of populations' home ecoregion combined with grouping of minimum temperature and aridity. Additional reductions in survival were explained by ungrouped (i.e., continuous) measures of garden-to-population-origin separation in geographic distance (5% decrease in survival per 100 km increase in separation; R2  = 0.22) and especially in minimum temperature in younger plants (-4% per + °C difference, R2  = 0.56 vs. 0.29 in the 14th vs. 27th post-planting years, respectively). Longer-term common garden studies are needed. While we await them, uncertainty in adaptive variation resulting from short-term observations could be quantitatively estimated and reported with seed-transfer guidelines to reduce risks of introducing maladapted provenances in restoration.


Asunto(s)
Artemisia , Jardines , Adaptación Fisiológica , Clima , Cambio Climático
13.
Front Plant Sci ; 9: 1140, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30108605

RESUMEN

The spatial patterning of alpine plant communities is strongly influenced by the variation in physical factors such as temperature and moisture, which are strongly affected by snow depth and snowmelt patterns. Earlier snowmelt timing and greater soil-moisture limitations may favor wide-ranging species adapted to a broader set of ecohydrological conditions than alpine-restricted species. We asked how plant community composition, phenology, plant water relations, and photosynthetic gas exchange of alpine-restricted and wide-ranging species differ in their responses to a ca. 40-day snowmelt gradient in the Colorado Rocky Mountains (Lewisia pygmaea, Sibbaldia procumbens, and Hymenoxys grandiflora were alpine-restricted and Artemisia scopulorum, Carex rupestris, and Geum rossii were wide-ranging species). As hypothesized, species richness and foliar cover increased with earlier snowmelt, due to a greater abundance of wide-ranging species present in earlier melting plots. Flowering initiation occurred earlier with earlier snowmelt for 12 out of 19 species analyzed, while flowering duration was shortened with later snowmelt for six species (all but one were wide-ranging species). We observed >50% declines in net photosynthesis from July to September as soil moisture and plant water potentials declined. Early-season stomatal conductance was higher in wide-ranging species, indicating a more competitive strategy for water acquisition when soil moisture is high. Even so, there were no associated differences in photosynthesis or transpiration, suggesting no strong differences between these groups in physiology. Our findings reveal that plant species with different ranges (alpine-restricted vs. wide-ranging) could have differential phenological and physiological responses to snowmelt timing and associated soil moisture dry-down, and that alpine-restricted species' performance is more sensitive to snowmelt. As a result, alpine-restricted species may serve as better indicator species than their wide-ranging heterospecifics. Overall, alpine community composition and peak % cover are strongly structured by spatio-temporal patterns in snowmelt timing. Thus, near-term, community-wide changes (or variation) in phenology and physiology in response to shifts in snowmelt timing or rates of soil dry down are likely to be contingent on the legacy of past climate on community structure.

14.
Glob Chang Biol ; 24(10): 4972-4982, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29964360

RESUMEN

Restoration and rehabilitation of native vegetation in dryland ecosystems, which encompass over 40% of terrestrial ecosystems, is a common challenge that continues to grow as wildfire and biological invasions transform dryland plant communities. The difficulty in part stems from low and variable precipitation, combined with limited understanding about how weather conditions influence restoration outcomes, and increasing recognition that one-time seeding approaches can fail if they do not occur during appropriate plant establishment conditions. The sagebrush biome, which once covered over 620,000 km2 of western North America, is a prime example of a pressing dryland restoration challenge for which restoration success has been variable. We analyzed field data on Artemisia tridentata (big sagebrush) restoration collected at 771 plots in 177 wildfire sites across its western range, and used process-based ecohydrological modeling to identify factors leading to its establishment. Our results indicate big sagebrush occurrence is most strongly associated with relatively cool temperatures and wet soils in the first spring after seeding. In particular, the amount of winter snowpack, but not total precipitation, helped explain the availability of spring soil moisture and restoration success. We also find considerable interannual variability in the probability of sagebrush establishment. Adaptive management strategies that target seeding during cool, wet years or mitigate effects of variability through repeated seeding may improve the likelihood of successful restoration in dryland ecosystems. Given consistent projections of increasing temperatures, declining snowpack, and increasing weather variability throughout midlatitude drylands, weather-centric adaptive management approaches to restoration will be increasingly important for dryland restoration success.


Asunto(s)
Artemisia/crecimiento & desarrollo , Restauración y Remediación Ambiental , Estaciones del Año , Suelo/química , Temperatura , Cambio Climático , Ecosistema , Ambiente , América del Norte , Recursos Hídricos
15.
Glob Chang Biol ; 24(1): 197-211, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28746786

RESUMEN

Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. Here, we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low-elevation provenance had more than three-fold greater recruitment to their third year than seeds from a high-elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating halved recruitment to the third year of both low- and high-elevation seed sources across the elevation gradient, while watering more than doubled recruitment, alleviating some of the negative effects of heating. Demographic models based on recruitment data from the climate manipulations and long-term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid postfire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low-elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. Our results show that ecotypes from lower elevations within a species' range could enhance recruitment and facilitate upslope range shifts with climate change.


Asunto(s)
Cambio Climático , Bosques , Pinus/fisiología , Semillas/fisiología , Demografía , Incendios , Plantones , Agua
16.
Nat Ecol Evol ; 1(9): 1285-1291, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29046541

RESUMEN

Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.


Asunto(s)
Carbono/deficiencia , Sequías , Transpiración de Plantas/fisiología , Árboles/fisiología , Xilema/fisiología , Cambio Climático , Cycadopsida/fisiología , Magnoliopsida/fisiología , Dinámica Poblacional , Estrés Fisiológico
18.
Evol Appl ; 10(4): 313-322, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28352292

RESUMEN

A genecological approach was used to explore genetic variation for survival in Artemisia tridentata (big sagebrush). Artemisia tridentata is a widespread and foundational shrub species in western North America. This species has become extremely fragmented, to the detriment of dependent wildlife, and efforts to restore it are now a land management priority. Common-garden experiments were established at three sites with seedlings from 55 source-populations. Populations included each of the three predominant subspecies, and cytotype variations. Survival was monitored for 5 years to assess differences in survival between gardens and populations. We found evidence of adaptive genetic variation for survival. Survival within gardens differed by source-population and a substantial proportion of this variation was explained by seed climate of origin. Plants from areas with the coldest winters had the highest levels of survival, while populations from warmer and drier sites had the lowest levels of survival. Survival was lowest, 36%, in the garden that was prone to the lowest minimum temperatures. These results suggest the importance of climatic driven genetic differences and their effect on survival. Understanding how genetic variation is arrayed across the landscape, and its association with climate can greatly enhance the success of restoration and conservation.

19.
Oecologia ; 183(3): 861-874, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28105522

RESUMEN

Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.


Asunto(s)
Carbono , Lluvia , Ecosistema , Plantas , Poaceae , Estaciones del Año , Suelo
20.
Glob Chang Biol ; 23(6): 2383-2395, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27976819

RESUMEN

Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.


Asunto(s)
Clima , Bosques , Árboles , Picea , Pinus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...