Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 10(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200674

RESUMEN

Parasitic plants belonging to the Orobanchaceae family include species that cause heavy damage to crops in Mediterranean climate regions. Phelipanche aegyptiaca is the most common of the Orobanchaceae species in Israel inflicting heavy damage to a wide range of broadleaf crops, including processing tomatoes. P. aegyptiaca is extremely difficult to control due to its minute and vast number of seeds and its underground association with host plant roots. The highly efficient attachment of the parasite haustoria into the host phloem and xylem enables the diversion of water, assimilates and minerals from the host into the parasite. Drip irrigation is the most common method of irrigation in processing tomatoes in Israel, but the delivery of herbicides via drip irrigation systems (herbigation) has not been thoroughly studied. The aim of these studies was to test, under laboratory and greenhouse conditions, the factors involved in the behavior of soil-herbigated imazapic, and the consequential influence of imazapic on P. aegyptiaca and tomato plants. Dose-response Petri dish studies showed that imazapic does not impede P. aegyptiaca seed germination and non-attached seedlings, even at the high rate of 5000 ppb. Imazapic applied to tomato roots inoculated with P. aegyptiaca seeds in a PE bag system revealed that the parasite is killed only after its attachment to the tomato roots, at concentrations as low as 2.5 ppb. Imazapic sorption curves and calculated Kd and Koc values indicated that the herbicide Kd is similar in all soils excluding a two-fold higher coefficient in the Gadash farm soil, while the Koc was similar in all soils except the Eden farm soil, in which it was more than twofold lower. In greenhouse studies, control of P. aegyptiaca was achieved at >2.5 ppb imazapic, but adequate control requires repeated applications due to the 7-day half-life (t1/2) of the herbicide in the soil. Tracking of imazapic in soil and tomato roots revealed that the herbicide accumulates in the tomato host plant roots, but its movement to newly formed roots is limited. The data obtained in the laboratory and greenhouse studies provide invaluable knowledge for devising field imazapic application strategies via drip irrigation systems for efficient and selective broomrape control.

2.
Sci Total Environ ; 541: 742-749, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26437348

RESUMEN

We studied corticosterone occurrence in lettuce plants grown on three biosolids amended soils under irrigation with either tap water or secondary wastewater effluent. Corticosterone was examined as it has possible implications for human health. It is a major glucocorticoid, and as such has an effect on regulation of metabolism, immune functions and stress response. The plants were grown in 220-L lysimeters packed with 3 soils which represent a wide range of physicochemical properties. Lettuce was grown in cycles (two in summer and two in winter) during 3 years, and in every spring season the sludges were re-applied. Corticosterone was quantified using ELISA and LCMS, and was found in the biosolids, tap water, wastewater effluent and lettuce plants. The respective ranges of concentrations were: 11-92 ng g(-1), 0.5-1.6 ng L(-1), 4.2-4.7 ng L(-1); and 1-900 ng g(-1) dry weight. A positive relationship was found between corticosterone concentrations in winter-grown lettuces and the plants fresh weight. The corticosterone content of the plants did not correspond with either the type of irrigation water or the biosolids type and rate of application or the soil properties.


Asunto(s)
Agricultura/métodos , Corticosterona/análisis , Lactuca/química , Contaminantes del Suelo/análisis , Eliminación de Residuos Líquidos/métodos , Monitoreo del Ambiente , Aguas del Alcantarillado , Aguas Residuales/química
3.
Chemosphere ; 134: 217-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25957034

RESUMEN

Spatial heterogeneity in the chemical concentration of interstitial water in the vadose zone was previously observed under apparently homogeneous surface conditions on two leveled fields sprinkler irrigated with treated sewage effluents on the phreatic Coastal Plain aquifer of Israel. This phenomenon greatly hampers the monitoring of groundwater quality. In this study we report on the presence of puddles of different size and shape that were sporadically observed in these fields. Temporal variability noted in the concentration of treated sewage effluents components in the puddles were considered to be related to evapotranspiration and degradation. For example: increases in the electrical conductivity (up to 1.32 mS/cm), and in the concentrations of chloride (up to 521 mg/L), dissolved organic carbon (up to 28.4 mg/L), and carbamazepine (up to 780 ng/L) and decreases in the concentrations of nitrate (up to 20.1mg/L) and caffeine (3,396 ng/L). Variable trends in concentration were observed for sulfamethoxazole, venlafaxine, 10-hydroxy-10,11-dihydrocarbamazepine and o-desmethylvenlafaxine. The presence of puddles was not necessarily related to areas with high irrigation water input. It is postulated that the continuous chemical variability in the puddles, whose location and size are also variable, determine a heterogeneous influx of solutes into the soil and subsequently into the vadose zone.


Asunto(s)
Agua Subterránea/química , Nitratos/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes del Agua/análisis , Cafeína/análisis , Carbamazepina/análogos & derivados , Carbamazepina/análisis , Carbono/análisis , Succinato de Desvenlafaxina/análisis , Conductividad Eléctrica , Israel , Límite de Detección , Aguas del Alcantarillado , Suelo/química , Sulfametoxazol/análisis , Clorhidrato de Venlafaxina/análisis
4.
Sci Total Environ ; 505: 357-66, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25461037

RESUMEN

One of the major concerns for human health in the past decade is the potential dangers posed by increased concentrations of steroidal hormones in soils and water. These hormones are considered to be endocrine disrupting compounds (EDCs), which may harm human health when exposed to high concentrations, or in the case of long term exposure to lower concentrations. In a 3 year study, two steroids, estrone and testosterone, were measured in lettuce plants irrigated with wastewater effluents and freshwater and treated with several types of biosolids. The relative contribution of the different factors, mainly irrigation water and biosolids, to the hormone levels in the lettuce plants was determined. It was found that irrigation water, which contained significant amounts of hormones, had the most substantial effect, whereas biosolids had only minor influence on hormone levels in the lettuce. The hormone levels in the plants were compared to the FDA recommendation for daily consumption in food, and were found to exceed the recommended level (when consumed by a typical individual), and therefore could have negative physiological impacts. Overall this study shows that biosolids have little effect on hormone uptake by lettuce, and it emphasizes the negative impact of irrigation water on these levels, which is of concern to public health.


Asunto(s)
Lactuca/química , Contaminantes del Suelo/análisis , Esteroides/análisis , Contaminantes Químicos del Agua/análisis , Agricultura/métodos , Disruptores Endocrinos/análisis , Suelo/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
5.
J Agric Food Chem ; 58(19): 10590-6, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20836497

RESUMEN

Use of genetically modified cultivars resistant to the herbicide glyphosate (N-phosphonomethylglycine) is strongly associated with conservation-tillage (CsT) management for maize ( Zea mays L.), soybean ( Glycine max L.), and cotton ( Gossypium hirsutum L.) cultivation. Due to the emergence of glyphosate-resistant weed biotypes, alternate weed management practices are needed to sustain CsT use. This work focused on metolachlor use (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) in a CsT system. The fate and efficacy of granular and emulsifiable concentrate (EC) formulations or an EC surrogate were compared for CsT cotton production in the Atlantic Coastal Plain region of southern Georgia (USA). The granular formulation, a clay-alginate polymer, was produced in the authors' laboratory; EC was a commercial product. In field and laboratory dissipations the granular metolachlor exhibited 8-fold greater soil persistence. Rainfall simulation runoff assessments indicated that use of the granular formulation in a common CsT system, strip-tillage (ST), may reduce metolachlor runoff loss when compared to conventional tillage (CT) management or when EC formulations are used in the ST system. Metolachlor leaching assessments using field-deployed lysimeters showed some tillage (ST > CT) and formulation (EC > granular) differences. Overall leaching was generally small when compared to runoff loss. Finally, greenhouse bioassays showed control of two weed species with the granular was greater than or equal to that of the EC formulation; however, the granular formulation suppressed cotton growth to a greater extent. In sum, this metolachlor granular formulation has advantages for CsT cotton production; however, additional research is needed to assess impacts on crop injury.


Asunto(s)
Acetamidas/administración & dosificación , Agricultura/métodos , Herbicidas/administración & dosificación , Acetamidas/análisis , Alginatos , Silicatos de Aluminio , Gránulos Cromafines , Arcilla , Emulsiones , Ácido Glucurónico , Gossypium/crecimiento & desarrollo , Herbicidas/análisis , Ácidos Hexurónicos , Suelo/análisis
6.
Chemosphere ; 75(1): 20-7, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19135700

RESUMEN

The potential role of mechanochemical processes in enhancing degradation of imazaquin by soil components is demonstrated. The investigated components include montmorillonite saturated with Na(+), Ca(2+), Cu(2+)and Al(3+), Agsorb (a commercial clay mix), birnessite and hematite. The mechanical force applied was manual grinding of mixtures of imazaquin and the minerals, using mortar and pestle. The degradation rates of imazaquin in these mixtures were examined as a function of the following parameters: time of grinding, herbicide load (3.9, 8.9, 16.7 and 26.6 mg imazaquin per g mineral), temperature (10, 25, 40 and 70 degrees C), acidic/basic conditions, and dry or wet grinding. Dry grinding of imazaquin for 5 min with Al-montmorillonite or with hematite resulted in 56% and 71% degradation of the imazaquin, respectively. Wet grinding slightly reduced the degradation rate with hematite and entirely cancelled the enhancing effect of grinding with Al-montmorillonite. Wet grinding in the presence of the transition metals: Ni(2+), Cu(2+), Fe(3+) added as chlorides was carried out. Addition of Cu(2+) to Na-montmorillonite loaded with imazaquin was the most effective treatment in degrading imazaquin (more than 90% of the imazaquin degraded after 5 min of grinding). In this treatment, Cu-montmorillonite formation during the grinding process was confirmed by XRD and accordingly, grinding with Cu-montmorillonite gave similar degradation values. LC-MS analysis revealed that the mechanochemical transformation of imazaquin resulted in the formation of a dimer and several breakdown products. The reported results demonstrate once again that mechanochemical procedures offer a remediation avenue applicable to soils polluted with organic contaminants.


Asunto(s)
Herbicidas/análisis , Imidazoles/análisis , Minerales/química , Quinolinas/análisis , Contaminantes del Suelo/análisis , Cromatografía Líquida de Alta Presión , Restauración y Remediación Ambiental , Herbicidas/química , Herbicidas/metabolismo , Imidazoles/química , Imidazoles/metabolismo , Espectrometría de Masas , Quinolinas/química , Quinolinas/metabolismo , Contaminantes del Suelo/química , Temperatura , Factores de Tiempo , Difracción de Rayos X
7.
Environ Sci Technol ; 42(19): 7201-6, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18939547

RESUMEN

Sorption of nitrobenzene, phenol, and m-nitrophenol from water and n-hexadecane was measured on Na-montmorillonite and organoclays in which 41 and 90% of the exchange capacity of the Na-clay was occupied by hexadecyltrimethylammonium. The strength of sorbate-sorbent interactions in n-hexadecane for all three sorbents was in the following order: nitrobenzene < phenol < m-nitrophenol. The magnitude of the distribution coefficients suggests that the contribution to solute uptake of partitioning between n-hexadecane and the organic pseudophase of the dried organoclays is minor, whereas the major contribution is from adsorptive sorbate-sorbent interactions. Sorption isotherms obtained in different solvents were compared using a sorbate activity scale. In the organoclays, the stronger the tendency of a sorbate to interact with sorption sites, the less pronounced is the reduction in the activity-based sorption due to competition with water. The order of this reduction for the different sorbates is nitrobenzene > phenol > m-nitrophenol. The weakening of sorbate-sorbent interactions resulting from water-sorbate competition might be mitigated by interaction between the organic sorbate and sorbed water molecules. Since the more strongly interacting organic compounds are less susceptible to suppression of sorption in the presence of water, hydrating organoclays may result in an increased differentiation between "weakly" and "strongly" interacting ("nonpolar" and "polar") compounds in the organoclay phase.


Asunto(s)
Silicatos de Aluminio/química , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Orgánicos/química , Agua/química , Adsorción , Alcanos/química , Arcilla
8.
J Agric Food Chem ; 56(4): 1322-7, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-18193836

RESUMEN

The release of alachlor from controlled-release formulations (CRFs) based on alginate-montmorillonite matrices into aqueous polyethylene glycol (PEG) solutions of different concentrations and into a soil at different moisture contents was studied. In distilled water and in PEG-containing solutions displaying -0.1 MPa potential and up, the beads imbibe water and swell. The ensuing increase in weight is about 5%, and the increase in the bead's diameter is about 10%. At water potentials of -0.5 MPa and lower, loss of weight and shrinkage of the beads were observed. The changes in weight and diameter of the alginate-clay beads incubated in a Hamra loamy sand soil at 26.5% moisture content (w/w; -0.18 MPa) were similar to those observed in PEG solutions of >-0.5 MPa moisture potential. The weight and diameter losses observed in the drier soils (12.0 and 7.1% water content; -0.49 and -1.11 MPa) were similar to those in the more concentrated PEG solutions. A decrease in the rate of release of the active ingredient from the beads into soil was observed as the water potential decreased (drier soils). The release of the active ingredient from the investigated CRFs displayed a linear relationship to the square root of time, suggesting a diffusion-controlled-release rate. Data extracted from this relationship enabled the formulation of a mathematical model that correlates rate of release to water content.


Asunto(s)
Acetamidas/química , Alginatos/química , Herbicidas/química , Suelo , Agua/química , Preparaciones de Acción Retardada , Matemática , Polietilenglicoles , Contaminantes del Suelo
9.
Environ Sci Technol ; 41(1): 106-11, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17265934

RESUMEN

The mechanism for the hydrolysis of methyl parathion (MP) by a bifunctional quaternary-ammonium based long-chained organclay(LCOC) containing an alkylamine (-CH2CH2-NH2) headgroup was elucidated. The pathway of the catalytic hydrolysis of methyl parathion by the LCOC was defined by following the effect of replacing H20 with D20, by replacing the primary amino headgroup by a tertiary amino group, and by a detailed mathematical analysis of the proposed reaction scheme. A phosphorothioate isomer of MP was formed in the presence of the LCOC as an intermediate reaction product, initially increasing in concentration and then disappearing. The isotope effect was minimal and substituting a tertiary amine in the LCOC increased the rate of MP hydrolysis. A mechanism is proposed in which hydrolysis of MP can proceed via both a direct route (specific base hydrolysis) and through the formation of the isomer which then undergoes specific base hydrolysis more rapidly than the parent MP. The relative importance of each pathway is a function of pH with the direct hydrolysis of MP being predominant at higher pH values (pH > 10) and the isomer intermediate pathway predominating at lower pH values (pH approximately 8-10).


Asunto(s)
Silicatos de Aluminio/química , Metil Paratión/química , Modelos Químicos , Compuestos de Amonio Cuaternario/química , Arcilla , Concentración de Iones de Hidrógeno , Hidrólisis , Isótopos/química , Estructura Molecular
10.
J Environ Qual ; 33(5): 1930-6, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15356256

RESUMEN

Organoclays are excellent sorbents for nonionic contaminants and therefore may have many environmental applications. A major limitation on the use of organoclays is that the contaminant merely changes its location from one environmental compartment to another while still remaining intact. In this study, a new type of organoclay, termed a bifunctional organoclay, has been prepared. It is able not only to sorb organophosphate pesticides, but also to catalyze their hydrolysis, and thereby detoxify them. The bifunctional organoclay prepared in this study is based on sodium montmorillonite, in which the inorganic counter ions are replaced by N-decyl-N,N-dimethyl-N-(2-aminoethyl) ammonium (DDMAEA). The detoxifying capacity of this organoclay for two organophosphate pesticides, methyl parathion [O,O-dimethyl O-(p-nitrophenyl) thionophosphate] and tetrachlorvinphos [2-chloro-1-(2,4,5-trichlorophenyl)ethenyl dimethyl phosphate], was demonstrated. It was shown that although the sorption of these pesticides on the bifunctional organoclay is very similar to that on N-decyl-N,N,N-trimethyl ammonium (DTMA) organoclay (the corresponding nonbifunctional organoclay), the hydrolysis of these pesticides is substantially enhanced only by the bifunctional organoclay. The half-life for the hydrolysis of the investigated pesticides in the presence of the bifunctional organoclay is about 12 times less than for their spontaneous hydrolysis, and the enhancement is even more pronounced relative to the hydrolysis of these pesticides in the presence of the DTMA organoclay (which actually inhibits their hydrolysis). Based on kinetic measurements, the pK(a) of the ethylamino group of the bifunctional organoclay was estimated to be around 9.0. It is postulated that the catalytic effect of the bifunctional organoclay can be attributed to a nucleophilic attack of the unprotonated ethylamino group of the organoclay on the organophosphate ester.


Asunto(s)
Silicatos de Aluminio/química , Insecticidas/aislamiento & purificación , Contaminantes del Suelo/aislamiento & purificación , Adsorción , Bentonita/química , Arcilla , Semivida , Hidrólisis , Cinética , Metil Paratión/aislamiento & purificación , Tetraclorvinfos/aislamiento & purificación
11.
J Contam Hydrol ; 75(1-2): 55-70, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15385098

RESUMEN

The transport of polycyclic aromatic hydrocarbons (PAH) in porous media in the presence of dissolved organic matter (DOM) was predicted with a transport bicontinuum model using independently obtained relationships to derive transport parameters for describing the effect of PAH binding to the DOM. The sorption constants of PAHs to soil and their binding constants to DOM were derived from basic correlations with K(ow) (indicator of hydrophobicity). The kinetic (rate) constants were derived from previously published correlations with K(p) (sorption constant). The independently obtained sorption and rate constants were corrected for binding to DOM and were used to predict the breakthrough curves (BTC) of contaminants in the presence and the absence of DOM. Column results confirmed the independently predicted BTC of PAHs in the presence of DOM that did not sorb to the solid phase, as well as the effect of DOM on the rate of the sorption and desorption processes. These findings confirm the ability to quantitatively describe how DOM facilitates transport of contaminants in the subsurface using independently derived parameters.


Asunto(s)
Predicción , Compuestos Orgánicos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Movimientos del Agua , Absorción , Transporte Biológico , Monitoreo del Ambiente , Cinética , Modelos Teóricos , Contaminantes del Suelo/metabolismo , Solubilidad , Contaminantes Químicos del Agua/metabolismo
12.
Chemosphere ; 49(10): 1375-88, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12489735

RESUMEN

Petroleum products are generally volatile hydrocarbon mixtures. These mixtures may contaminate land surfaces, the unsaturated zone and ground waters at numerous sites and thus represent a long-term source of environmental subsurface pollution. Based on laboratory and field evidence obtained by our research groups and others we emphasize in the present review paper the effect of leaching on the abiotic processes controlling the fate of volatile petroleum hydrocarbon mixtures (VPHMs) in the soil environment. The modification of petroleum hydrocarbon mixtures due to changes in the soil water content is considered the result of a "leaching phenomenon". The experimental evidence of VPHM behavior in the porous media is linked to four major processes: retention, redistribution and attenuation in the subsurface, and dissolution in the soil water. Once VPHMs reach the soil surface, their residual concentration and composition is influenced by the amount and quality of the leaching water. The transport and natural attenuation of the VPHMs in the unsaturated zone is affected by the amount and rate of leaching. Since VPHM are a mixture of volatile and non-volatile hydrocarbons whose components differ by several orders of magnitude in their vapor pressure and water solubility, their fates in the soil environment under leaching will be diverse too. This will influence the temporal concentrations of the VPHM components and their distributions with depth, as vapors, solutes, or water-immiscible solutions. Wetting the soil before or after the VPHMs reach it, differentially affects the abiotic processes governing petroleum products behavior into the porous media.


Asunto(s)
Hidrocarburos/química , Petróleo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Hidrocarburos/análisis , Porosidad , Solubilidad , Volatilización
13.
J Environ Qual ; 31(5): 1657-64, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12371183

RESUMEN

Ground water pollution due to herbicide leaching has become a serious environmental problem. Imazaquin [2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)quinoline-3-carboxylic acid] is an herbicide used to control broadleaf weeds in legume crops. Imazaquin is negatively charged at the basic pH of calcareous soils and exhibits high leaching potential in soils. Our aim was to design formulation of imazaquin to reduce herbicide leaching. Imazaquin sorption on pillared clay (PC) and crystal violet (CV)-montmorillonite complexes was studied. The CV-montmorillonite complexes become positively charged with adsorption of CV above the cation exchange capacity (CEC) of montmorillonite, and thus can sorb imazaquin. The Langmuir equation provides a good fit to isotherms of imazaquin sorption on PC and CV-montmorillonite complexes, but for charged complexes an equation that combines electrostatics with specific binding was preferred. Maximal imazaquin sorption was 17.3 mmol kg-1 for PC and 22.2 mmol kg-1 for CV-montmorillonite complexes. The extents of imazaquin desorption into water were 21% for PC and 5% for CV-clay complexes. The presence of anions decreased imazaquin sorption on both sorbents in the sequence phosphate > acetate > sulfate. Reduction of imazaquin sorption by the anions and the extent of its desorption in electrolyte solutions were higher for PC than for CV-clay complexes. Leaching of imazaquin from CV-montmorillonite formulations through soil (Rhodoxeralf) columns was two times less than from PC formulations and four times less than that of technical imazaquin. The CV-montmorillonite complexes at a loading above the CEC appear to be suitable for preparation of organo-clay-imazaquin formulations that may reduce herbicide leaching significantly.


Asunto(s)
Herbicidas/análisis , Imidazoles/análisis , Quinolinas/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Silicatos de Aluminio/química , Antiinfecciosos Locales/química , Bentonita/química , Arcilla , Violeta de Genciana/química , Herbicidas/química , Imidazoles/química , Quinolinas/química
14.
Pest Manag Sci ; 58(5): 419-45, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11997969

RESUMEN

The soil sorption coefficient Kd and the soil organic carbon sorption coefficient KOC of pesticides are basic parameters used by environmental scientists and regulatory agencies worldwide in describing the environmental fate and behavior of pesticides. They are a measure of the strength of sorption of pesticides to soils and other geosorbent surfaces at the water/solid interface, and are thus directly related to both environmental mobility and persistence. KOC is regarded as a 'universal' parameter related to the hydrophobicity of the pesticide molecule, which applies to a given pesticide in all soils. This assumption is known to be inexact, but it is used in this way in modeling and estimating risk for pesticide leaching and runoff. In this report we examine the theory, uses, measurement or estimation, limitations and reliability of these parameters and provide some 'rules of thumb' for the use of these parameters in describing the behavior and fate of pesticides in the environment, especially in analysis by modeling.


Asunto(s)
Plaguicidas/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/análisis , Adsorción , Algoritmos , Benzopiranos/metabolismo , Carbono/metabolismo , Cromatografía en Capa Delgada/métodos , Sustancias Húmicas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Modelos Biológicos , Reproducibilidad de los Resultados , Agua/metabolismo , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...