RESUMEN
Objectives: Coronary CT angiography (CCTA) is becoming increasingly important in the workup of coronary artery disease. Imaging of stents and in-stent stenoses remains a challenge. This work investigates the assessability of in-stent stenoses in photon counting CT (PCCT) using ultra-high-resolution (UHR) imaging and optimized reconstruction kernels. Methods: In an established phantom, 6 stents with inserted hypodense stenoses were scanned in both standard resolution (SRM) and UHR in a clinical PCCT scanner (NAEOTOM Alpha, Siemens Healthineers, Germany). Reconstructions were made both with the clinically established and optimized kernels. The visible stent lumen and the extent of stenosis were quantitatively measured and compared with the angiographic reference standard. Also, region-of-interest (ROI)-based measurements and a qualitative assessment of image quality were performed. Results: The visible stent lumen and the extent of stenosis were measured more precisely in UHR compared to SRM (0.11 ± 0.19 vs 0.41 ± 0.22 mm, P < .001). The optimized kernel further improved the accuracy of the measurements and image quality in UHR (0.35 ± 0.23 vs 0.47 ± 0.19 mm, P < .001). Compared to angiography, stenoses were overestimated in PCCT, on average with an absolute difference of 18.20% ± 4.11%. Conclusions: Photon counting CCTA allows improved imaging of in-stent stenoses in a phantom using UHR imaging and optimized kernels. These results support the use of UHR and optimized kernels in clinical practice and further studies. Advances in knowledge: UHR imaging and optimized reconstruction kernels should be used in CCTA in the presence of cardiac stents.
RESUMEN
PURPOSE: To evaluate Relaxation-Enhanced Angiography without Contrast and Triggering (REACT), a novel 3D isotropic flow-independent non-contrast-enhanced magnetic resonance angiography (non-CE-MRA) for imaging of the abdominal arteries, by comparing image quality and assessment of vessel stenosis intraindidually with 4D CE-MRA. METHODS: Thirty patients (mean age 35.7 ± 16.8 years; 20 females) referred for the assessment of the arterial abdominal vasculature at 3 T were included in this retrospective, single-centre study. The protocol comprised both 4D CE-MRA and REACT (navigator-triggering, Compressed SENSE factor 10, nominal scan time 02:54 min, and reconstructed voxel size 0.78 × 0.78 × 0.85 mm3). Two radiologists independently evaluated 14 abdominal artery segments for stenoses, anatomical variants, and vascular findings (aortic dissection, abdominal aorta aneurysms and its branches). Subjective image quality was assessed using a 4-point Likert scale (1 = non-diagnostic, 4 = excellent). RESULTS: REACT had a total acquisition time of 5:36 ± 00:40 min, while 4D CE-MRA showed a total acquisition time (including the native scan and bolus tracking sequence) of 3:45 ± 00:59 min (p = 0.001). Considering 4D CE-MRA as the reference standard, REACT achieved a sensitivity of 87.5% and specificity of 100.0% for relevant (≥ 50%) stenosis while detecting 89.5% of all vascular findings other than stenosis. For all vessels combined, subjective vessel quality was slightly higher in 4D CE-MRA (3.0 [IQR: 2.0; 4.0.]; P = 0.040), although comparable to REACT (3.0 [IQR: 2.0; 3.5]). CONCLUSION: In a short scan time of about 5 min, REACT provides good diagnostic performance for detection of relevant stenoses, variants, and vascular findings of the abdominal arteries, while yielding to 4D CE-MRA comparable image quality.
RESUMEN
BACKGROUND: The continuous technical development of cardiac computed tomography (CT) over the last decades has led to an improvement in image quality and diagnostic accuracy, while simultaneously reducing radiation exposure. Despite these advancements, certain patient-related factors remain a challenge to conduct a high-quality diagnostic examination. QUESTION: What factors can negatively affect the image quality of cardiac CT and how can these be addressed? MATERIALS AND METHODS: Analysis of the available literature on cardiac CT and identification of the quality-limiting factors, discussion, and possible solutions. RESULTS: Tachycardia, arrhythmias, high coronary calcification, the presence of stents and coronary artery bypasses, as well as obesity and anxiety were identified as primary factors that limit image quality and diagnostic accuracy. These issues primarily arise from a lack of response or the presence of contraindications to premedication, blooming artifacts, variations in postoperative anatomy, as well as other personal factors. Suggested solutions include optimizing premedication, scanner modifications, the selection of the most suitable acquisition mode, new scanner technologies, and innovative image reconstruction methods including artificial intelligence. CONCLUSIONS: Certain factors continue to pose a major challenge for cardiac CT. Knowledge of alternative premedication, scanner modifications, as well as the use of postprocessing software and new technologies can help overcome these limitations, enabling successful and safe cardiac CTs even in challenging patients.
RESUMEN
Background Errors in radiology reports may occur because of resident-to-attending discrepancies, speech recognition inaccuracies, and large workload. Large language models, such as GPT-4 (ChatGPT; OpenAI), may assist in generating reports. Purpose To assess effectiveness of GPT-4 in identifying common errors in radiology reports, focusing on performance, time, and cost-efficiency. Materials and Methods In this retrospective study, 200 radiology reports (radiography and cross-sectional imaging [CT and MRI]) were compiled between June 2023 and December 2023 at one institution. There were 150 errors from five common error categories (omission, insertion, spelling, side confusion, and other) intentionally inserted into 100 of the reports and used as the reference standard. Six radiologists (two senior radiologists, two attending physicians, and two residents) and GPT-4 were tasked with detecting these errors. Overall error detection performance, error detection in the five error categories, and reading time were assessed using Wald χ2 tests and paired-sample t tests. Results GPT-4 (detection rate, 82.7%;124 of 150; 95% CI: 75.8, 87.9) matched the average detection performance of radiologists independent of their experience (senior radiologists, 89.3% [134 of 150; 95% CI: 83.4, 93.3]; attending physicians, 80.0% [120 of 150; 95% CI: 72.9, 85.6]; residents, 80.0% [120 of 150; 95% CI: 72.9, 85.6]; P value range, .522-.99). One senior radiologist outperformed GPT-4 (detection rate, 94.7%; 142 of 150; 95% CI: 89.8, 97.3; P = .006). GPT-4 required less processing time per radiology report than the fastest human reader in the study (mean reading time, 3.5 seconds ± 0.5 [SD] vs 25.1 seconds ± 20.1, respectively; P < .001; Cohen d = -1.08). The use of GPT-4 resulted in lower mean correction cost per report than the most cost-efficient radiologist ($0.03 ± 0.01 vs $0.42 ± 0.41; P < .001; Cohen d = -1.12). Conclusion The radiology report error detection rate of GPT-4 was comparable with that of radiologists, potentially reducing work hours and cost. © RSNA, 2024 See also the editorial by Forman in this issue.
Asunto(s)
Radiología , Humanos , Estudios Retrospectivos , Radiografía , Radiólogos , ConfusiónRESUMEN
BACKGROUND AND PURPOSE: Long acquisition times limit the feasibility of established non-contrast-enhanced MRA (non-CE-MRA) techniques. The purpose of this study was to evaluate a highly accelerated flow-independent sequence (Relaxation-Enhanced Angiography without Contrast and Triggering [REACT]) for imaging of the extracranial arteries in acute ischemic stroke (AIS). MATERIALS AND METHODS: Compressed SENSE (CS) accelerated (factor 7) 3D isotropic REACT (fixed scan time: 01:22 min, reconstructed voxel size 0.625 × 0.625 × 0.75 mm3) and CE-MRA (CS factor 6, scan time: 1:08 min, reconstructed voxel size 0.5 mm3) were acquired in 76 AIS patients (69.4 ± 14.3 years, 33 females) at 3 Tesla. Two radiologists assessed scans for the presence of internal carotid artery (ICA) stenosis and stated their diagnostic confidence using a 5-point scale (5 = excellent). Vessel quality of cervical arteries as well as the impact of artifacts and image noise were scored on 5-point scales (5 = excellent/none). Apparent signal- and contrast-to-noise ratios (aSNR/aCNR) were measured for the common carotid artery (CCA) and ICA (C1-segment). RESULTS: REACT provided a sensitivity of 88.5% and specificity of 100% for clinically relevant (≥50%) ICA stenosis with substantial concordance to CE-MRA regarding stenosis grading (Cohen's kappa 0.778) and similar diagnostic confidence (REACT: mean 4.5 ± 0.4 vs. CE-MRA: 4.5 ± 0.6; P = 0.674). Presence of artifacts (3.6 ± 0.5 vs. 3.5 ± 0.7; P = 0.985) and vessel quality (all segments: 3.6 ± 0.7 vs. 3.8 ± 0.7; P = 0.004) were comparable between both techniques with REACT showing higher scores at the CCA (4.3 ± 0.6 vs. 3.8 ± 0.9; P < 0.001) and CE-MRA at V2- (3.3 ± 0.5 vs. 3.9 ± 0.8; P < 0.001) and V3-segments (3.3 ± 0.5 vs. 4.0 ± 0.8; P < 0.001). For all vessels, REACT showed a lower impact of image noise (3.8 ± 0.6 vs. 3.6 ± 0.7; P = 0.024) while yielding higher aSNR (52.5 ± 15.1 vs. 37.9 ± 12.5; P < 0.001) and aCNR (49.4 ± 15.0 vs. 34.7 ± 12.3; P < 0.001) for all vessels combined. CONCLUSIONS: In patients with acute ischemic stroke, highly accelerated REACT provides an accurate detection of ICA stenosis with vessel quality and scan time comparable to CE-MRA.
Asunto(s)
Accidente Cerebrovascular Isquémico , Angiografía por Resonancia Magnética , Humanos , Femenino , Masculino , Angiografía por Resonancia Magnética/métodos , Anciano , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Persona de Mediana Edad , Cuello/diagnóstico por imagen , Cuello/irrigación sanguínea , Medios de Contraste , Anciano de 80 o más Años , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodosRESUMEN
BACKGROUND: Recently, a disease modifying therapy has become available for transthyretin amyloid cardiomyopathy (ATTR-CM). A validated monitoring concept of treatment is lacking, but a current expert consensus recommends three clinical domains (clinical, biomarker and ECG/imaging) assessed by several measurable features to define disease progression. METHODS: We retrospectively analyzed data of wild-type ATTR-CM patients initiating tafamidis therapy assessed within our local routine protocol at baseline and 6-months follow-up with respect to the frequency of values beyond the proposed thresholds defining disease progression. Additionally, associations of cardiac magnetic resonance (CMR) tomography with clinical domains were examined within a subgroup. RESULTS: Sixty-two ATTR-CM patients were included (88.7% male, mean age 79 years). In total, 16.1% of patients had progress in the clinical and functional domain, 33.9% in the biomarker domain and 43.5% in the imaging/electrocardiography (ECG) domain, with the latter driven by deterioration of the diastolic dysfunction grade and global longitudinal strain. In total, 35.5% of patients showed progress in none, 35.5% in one, 29.0% in two and no patient in three domains, the latter indicating overall disease progression. A subgroup analysis of twenty-two patients with available baseline and follow-up CMR data revealed an increase in CMR-based extracellular volume by more than 5% in 18.2% of patients, with no significant correlation with progress in one of the clinical domains. CONCLUSIONS: We provide first frequency estimates of the markers of disease progression according to a recent expert consensus statement, which might help refine the multiparametric monitoring concept in patients with ATTR-CM.
RESUMEN
Aim: The purpose of this study was to investigate the clinical application of Compressed SENSE accelerated single-breath-hold LGE with 3D isotropic resolution compared to conventional LGE imaging acquired in multiple breath-holds. Material & Methods: This was a retrospective, single-center study including 105 examinations of 101 patients (48.2 ± 16.8 years, 47 females). All patients underwent conventional breath-hold and 3D single-breath-hold (0.96 × 0.96 × 1.1â mm3 reconstructed voxel size, Compressed SENSE factor 6.5) LGE sequences at 1.5â T in clinical routine for the evaluation of ischemic or non-ischemic cardiomyopathies. Two radiologists independently evaluated the left ventricle (LV) for the presence of hyperenhancing lesions in each sequence, including localization and transmural extent, while assessing their scar edge sharpness (SES). Confidence of LGE assessment, image quality (IQ), and artifacts were also rated. The impact of LV ejection fraction (LVEF), heart rate, body mass index (BMI), and gender as possible confounders on IQ, artifacts, and confidence of LGE assessment was evaluated employing ordinal logistic regression analysis. Results: Using 3D single-breath-hold LGE readers detected more hyperenhancing lesions compared to conventional breath-hold LGE (n = 246 vs. n = 216 of 1,785 analyzed segments, 13.8% vs. 12.1%; p < 0.0001), pronounced at subendocardial, midmyocardial, and subepicardial localizations and for 1%-50% of transmural extent. SES was rated superior in 3D single-breath-hold LGE (4.1 ± 0.8 vs. 3.3 ± 0.8; p < 0.001). 3D single-breath-hold LGE yielded more artifacts (3.8 ± 1.0 vs. 4.0 ± 3.8; p = 0.002) whereas IQ (4.1 ± 1.0 vs. 4.2 ± 0.9; p = 0.122) and confidence of LGE assessment (4.3 ± 0.9 vs. 4.3 ± 0.8; p = 0.374) were comparable between both techniques. Female gender negatively influenced artifacts in 3D single-breath-hold LGE (p = 0.0028) while increased heart rate led to decreased IQ in conventional breath-hold LGE (p = 0.0029). Conclusions: In clinical routine, Compressed SENSE accelerated 3D single-breath-hold LGE yields image quality and confidence of LGE assessment comparable to conventional breath-hold LGE while providing improved delineation of smaller LGE lesions with superior scar edge sharpness. Given the fast acquisition of 3D single-breath-hold LGE, the technique holds potential to drastically reduce the examination time of CMR.
RESUMEN
OBJECTIVES: To evaluate dual-layer dual-energy computed tomography (dlDECT)-derived pulmonary perfusion maps for differentiation between acute pulmonary embolism (PE) and chronic thromboembolic pulmonary hypertension (CTEPH). METHODS: This retrospective study included 131 patients (57 patients with acute PE, 52 CTEPH, 22 controls), who underwent CT pulmonary angiography on a dlDECT. Normal and malperfused areas of lung parenchyma were semiautomatically contoured using iodine density overlay (IDO) maps. First-order histogram features of normal and malperfused lung tissue were extracted. Iodine density (ID) was normalized to the mean pulmonary artery (MPA) and the left atrium (LA). Furthermore, morphological imaging features for both acute and chronic PE, as well as the combination of histogram and morphological imaging features, were evaluated. RESULTS: In acute PE, normal perfused lung areas showed a higher mean and peak iodine uptake normalized to the MPA than in CTEPH (both p < 0.001). After normalizing mean ID in perfusion defects to the LA, patients with acute PE had a reduced average perfusion (IDmean,LA) compared to both CTEPH patients and controls (p < 0.001 for both). IDmean,LA allowed for a differentiation between acute PE and CTEPH with moderate accuracy (AUC: 0.72, sensitivity 74%, specificity 64%), resulting in a PPV and NPV for CTEPH of 64% and 70%. Combining IDmean,LA in the malperfused areas with the diameter of the MPA (MPAdia) significantly increased its ability to differentiate between acute PE and CTEPH (sole MPAdia: AUC: 0.76, 95%-CI: 0.68-0.85 vs. MPAdia + 256.3 * IDmean,LA - 40.0: AUC: 0.82, 95%-CI: 0.74-0.90, p = 0.04). CONCLUSION: dlDECT enables quantification and characterization of pulmonary perfusion patterns in acute PE and CTEPH. Although these lack precision when used as a standalone criterion, when combined with morphological CT parameters, they hold potential to enhance differentiation between the two diseases. CLINICAL RELEVANCE STATEMENT: Differentiating between acute PE and CTEPH based on morphological CT parameters is challenging, often leading to a delay in CTEPH diagnosis. By revealing distinct pulmonary perfusion patterns in both entities, dlDECT may facilitate timely diagnosis of CTEPH, ultimately improving clinical management. KEY POINTS: ⢠Morphological imaging parameters derived from CT pulmonary angiography to distinguish between acute pulmonary embolism and chronic thromboembolic pulmonary hypertension lack diagnostic accuracy. ⢠Dual-layer dual-energy CT reveals different pulmonary perfusion patterns between acute pulmonary embolism and chronic thromboembolic pulmonary hypertension. ⢠The identified parameters yield potential to enable more timely identification of patients with chronic thromboembolic pulmonary hypertension.
RESUMEN
Published under a CC BY 4.0 license.
Asunto(s)
Radiología , Humanos , Estudios de Factibilidad , RadiografíaRESUMEN
Background: Diagnosing a coronavirus disease 2019 (COVID-19) infection with high specificity in chest computed tomography (CT) imaging is considered possible due to distinctive imaging features of COVID-19 pneumonia. Since other viral non-COVID pneumonia show mostly a different distribution pattern, it is reasonable to assume that the patterns observed caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a consequence of its genetically encoded molecular properties when interacting with the respiratory tissue. As more mutations of the initial SARS-CoV-2 wild-type with varying aggressiveness have been detected in the course of 2021, it became obvious that its genome is in a state of transformation and therefore a potential modification of the specific morphological appearance in CT may occur. The aim of this study was to quantitatively analyze the morphological differences of the SARS-CoV-2-B.1.1.7 mutation and wildtype variant in CT scans of the thorax. Methods: We analyzed a dataset of 140 patients, which was divided into pneumonias caused by n=40 wildtype variants, n=40 B.1.1.7 variants, n=20 bacterial pneumonias, n=20 viral (non-COVID) pneumonias, and a test group of n=20 unremarkable CT examinations of the thorax. Semiautomated 3D segmentation of the lung tissue was performed for quantification of lung pathologies. The extent, ratio, and specific distribution of inflammatory affected lung tissue in each group were compared in a multivariate group analysis. Results: Lung segmentation revealed significant difference between the extent of ground glass opacities (GGO) or consolidation comparing SARS-CoV-2 wild-type and B.1.1.7 variant. Wildtype and B.1.1.7 variant showed both a symmetric distribution pattern of stage-dependent GGO and consolidation within matched COVID-19 stages. Viral non-COVID pneumonias had significantly fewer consolidations than the bacterial, but also than the COVID-19 B.1.1.7 variant groups. Conclusions: CT based segmentation showed no significant difference between the morphological appearance of the COVID-19 wild-type variant and the SARS-CoV-2 B.1.1.7 mutation. However, our approach allowed a semiautomatic quantification of bacterial and viral lung pathologies. Quantitative CT image analyses, such as the one presented, appear to be an important component of pandemic preparedness considering an organism with ongoing genetic change, to describe a potential arising change in CT morphological appearance of possible new upcoming COVID-19 variants of concern.
RESUMEN
Background: In stroke magnetic resonance imaging (MRI), contrast-enhanced magnetic resonance angiography (CE-MRA) is the clinical standard to depict extracranial arteries but native MRA techniques are of increased interest to facilitate clinical practice. The purpose of this study was to assess the detection of extracranial internal carotid artery (ICA) stenosis and plaques as well as the image quality of cervical carotid arteries between a novel flow-independent relaxation-enhanced angiography without contrast and triggering (REACT) sequence and CE-MRA in acute ischemic stroke (AIS). Methods: In this retrospective, single-center study, 105 consecutive patients (65.27±18.74 years, 63 males) were included, who received a standard stroke protocol at 3T in clinical routine including Compressed SENSE (CS) accelerated (factor 4) 3D isotropic REACT (fixed scan time: 02:46 min) and CS accelerated (factor 6) 3D isotropic CE-MRA. Three radiologists independently assessed scans for the presence of extracranial ICA stenosis and plaques (including hyper-/hypointense signal) with concomitant diagnostic confidence using 3-point scales (3= excellent). Vessel quality, artifacts, and image noise of extracranial carotid arteries were subjectively scored on 5-point scales (5= excellent/none). Wilcoxon tests were used for statistical comparison. Results: Considering CE-MRA as the standard of reference, REACT provided a sensitivity of 89.8% and specificity of 95.2% for any and of 93.5% and 95.8% for clinically relevant (≥50%) extracranial ICA stenosis and yielded a to CE-MRA comparable diagnostic confidence [mean ± standard deviation (SD), median (interquartile range): 2.8±0.5, 3 (3-3) vs. 2.7±0.5, 3 (2-3), P=0.03]. Using REACT, readers detected more plaques overall (n=57.3 vs. 47.7, P<0.001) and plaques of hyperintense signal (n=12.3 vs. 5.7, P=0.02) with higher diagnostic confidence [2.8±0.5, 3 (3-3) vs. 2.6±0.7, 3 (2-3), P<0.001] than CE-MRA. After analyzing a total of 1,260 segments, the vessel quality of all segments combined [4.61±0.66 vs. 4.58±0.68, 5 (4-5) vs. 5 (4-5), P=0.0299] and artifacts [4.51±0.70 vs. 4.44±0.73, 5 (4-5) vs. 5 (4-5), P>0.05] were comparable between the sequences with REACT showing a lower image noise [4.43±0.67 vs. 4.25±0.71, 5 (4-5) vs. 4 (4-5), P<0.001]. Conclusions: Without the use of gadolinium-based contrast agents or triggering, REACT provides a high sensitivity and specificity for extracranial ICA stenosis and a potential improved depiction of adjacent plaques while yielding to CE-MRA comparable vessel quality in a large patient cohort with AIS.
RESUMEN
Objectives: To evaluate the usefulness of spectral detector CT (SDCT)-derived pulmonary perfusion maps and pulmonary parenchyma characteristics for the semiautomated classification of pulmonary hypertension (PH). Methods: A total of 162 consecutive patients with right heart catheter (RHC)-proven PH of different aetiologies as defined by the current ESC/ERS guidelines who underwent CT pulmonary angiography (CTPA) on SDCT and 20 patients with an invasive rule-out of PH were included in this retrospective study. Semiautomatic lung segmentation into normal and malperfused areas based on iodine density (ID) as well as automatic, virtual non-contrast-based emphysema quantification were performed. Corresponding volumes, histogram features and the ID SkewnessPerfDef-Emphysema-Index (δ-index) accounting for the ratio of ID distribution in malperfused lung areas and the proportion of emphysematous lung parenchyma were computed and compared between groups. Results: Patients with PH showed a significantly greater extent of malperfused lung areas as well as stronger and more homogenous perfusion defects. In group 3 and 4 patients, ID skewness revealed a significantly more homogenous ID distribution in perfusion defects than in all other subgroups. The δ-index allowed for further subclassification of subgroups 3 and 4 (p < 0.001), identifying patients with chronic thromboembolic PH (CTEPH, subgroup 4) with high accuracy (AUC: 0.92, 95%-CI, 0.85-0.99). Conclusion: Abnormal pulmonary perfusion in PH can be detected and quantified by semiautomated SDCT-based pulmonary perfusion maps. ID skewness in malperfused lung areas, and the δ-index allow for a classification of PH subgroups, identifying groups 3 and 4 patients with high accuracy, independent of reader expertise.
RESUMEN
BACKGROUND: To evaluate whether volumetric iodine quantification of the lung allows for the automatic identification of patients with chronic thromboembolic pulmonary hypertension (CTEPH) and whether the extent of pulmonary malperfusion correlates with invasive hemodynamic parameters. METHODS: Retrospective data base search identified 30 consecutive patients with CTEPH who underwent CT pulmonary angiography (CTPA) on a spectral-detector CT scanner. Thirty consecutive patients who underwent an identical CT examination for evaluation of suspected acute pulmonary embolism and had no signs of pulmonary embolism or PH, served as control cohort. Lungs were automatically segmented for all patients and normal and malperfused volumes were segmented based on iodine density thresholds. Results were compared between groups. For correlation analysis between the extent of malperfused volume and mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) 3 patients were excluded because of a time span of more than 30 days between CTPA and right heart catheterization. RESULTS: Patients with CTEPH had a higher percentage of malperfused lung compared to controls (43.25%±24.72% vs. 21.82%±20.72%; P=0.001) and showed reduced mean iodine density in malperfused and normal-perfused lung areas, as well as in the vessel volume. Controls showed a left-tailed distribution of iodine density in malperfused lung areas while patients with CTEPH had a more symmetrical distribution (Skew: -0.382±0.435 vs. -0.010±0.396; P=0.004). Patients with CTEPH showed a significant correlation between the percentage of malperfused lung volume and the PVR (r=0.57, P=0.001). CONCLUSIONS: Volumetric iodine quantification helps to identify patients with CTEPH by showing increased areas of malperfusion. The extent of malperfusion might provide a measurement for disease severity in patients with CTEPH.
RESUMEN
PURPOSE: To investigate the diagnostic value of spectral detector CT (SDCT)-derived virtual non-contrast (VNC), virtual monoenergetic images (VMI) and iodine overlays (IO) for distinguishing infected from noninfected fluid collections (FC) in the chest or abdomen. METHOD: This retrospective study included 58 patients with venous phase SDCT with 77 FC. For all included FC, microbiological analysis of aspirated fluid served as reference. For quantitative analysis, wall thickness was measured, and (ROI)-based analysis performed within the fluid, the FC's wall (if any) and the aorta. Two radiologists qualitatively evaluated visibility of wall enhancement, diagnostic confidence regarding infection of fluid collection, confidence of CT-guided drainage catheter placement and visibility of anatomical landmarks in conventional images (CI) and VNC, VMI40keV, IO. RESULTS: Wall thickness significantly differed between infected (n = 46) and noninfected (n = 31) FC (3.5 ± 1.8 mm vs. 1.4 ± 1.8 mm, AUC = 0.81; p < 0.05). Fluid attenuation and wall enhancement was significantly higher in infected as compared to noninfected FC in all reconstructions (p < 0.05, respectively). Highest AUC regarding A) attenuation in fluid was yielded in CI and VMI70,80keV (0.75); B) wall enhancement in CI (0.88) followed by iodine concentration (0.86). Contrast-to-noise ratio of wall vs. fluid was highest in VMI40keV (p < 0.05). All assessed qualitative parameters received significantly higher ratings when using spectral reconstructions vs. CI (p for all <0.05), except for visibility of wall enhancement. CONCLUSION: Spectral reconstructions improve the assessment of infected from noninfected thoracoabdominal fluid collections and depiction of wall enhancement. Diagnostic performance of the quantitative measurements in spectral reconstructions were comparable with measurements in conventional images.
Asunto(s)
Yodo , Tomografía Computarizada por Rayos X , Abdomen , Drenaje , Humanos , Estudios Retrospectivos , Relación Señal-RuidoRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0193746.].
RESUMEN
AIM: Since cardiovascular magnetic resonance feature-tracking (CMR-FT) has been demonstrated to be of incremental clinical merit we investigated the interchangeability of global left and right ventricular strain parameters between different CMR-FT software solutions. MATERIAL AND METHODS: CMR-cine images of 10 patients without significant reduction in LVEF and RVEF and 10 patients with a significantly impaired systolic function were analyzed using two different types of FT-software (TomTec, Germany; QStrain, Netherlands). Global longitudinal strains (LV GLS, RV GLS), global left ventricular circumferential (GCS) and radial strains (GRS) were assessed. Differences in intra- and inter-observer variability within and between software types based on single and up to three repeated and subsequently averaged measurements were evaluated. RESULTS: Inter-vendor agreement was highest for GCS followed by LV GLS. GRS and RV GLS showed lower inter-vendor agreement. Variability was consistently higher in healthy volunteers as compared to the patient group. Intra-vendor reproducibility was excellent for GCS, LV GLS and RV GLS, but lower for GRS. The impact of repeated measurements was most pronounced for GRS and RV GLS on an intra-vendor level. CONCLUSION: Cardiac pathology has no influence on CMR-FT reproducibility. LV GLS and GCS qualify as the most robust parameters within and between individual software types. Since both parameters can be interchangeably assessed with different software solutions they may enter the clinical arena for optimized diagnostic and prognostic evaluation of cardiovascular morbidity and mortality in various pathologies.