Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
iScience ; 23(6): 101232, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32563155

RESUMEN

The gut microbiota shapes animal growth trajectory in stressful nutritional environments, but the molecular mechanisms behind such physiological benefits remain poorly understood. The gut microbiota is mostly composed of bacteria, which construct metabolic networks among themselves and with the host. Until now, how the metabolic activities of the microbiota contribute to host juvenile growth remains unknown. Here, using Drosophila as a host model, we report that two of its major bacterial partners, Lactobacillus plantarum and Acetobacter pomorum, engage in a beneficial metabolic dialogue that boosts host juvenile growth despite nutritional stress. We pinpoint that lactate, produced by L. plantarum, is utilized by A. pomorum as an additional carbon source, and A. pomorum provides essential amino acids and vitamins to L. plantarum. Such bacterial cross-feeding provisions a set of anabolic metabolites to the host, which may foster host systemic growth despite poor nutrition.

2.
PLoS Biol ; 18(3): e3000681, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32196485

RESUMEN

The interplay between nutrition and the microbial communities colonizing the gastrointestinal tract (i.e., gut microbiota) determines juvenile growth trajectory. Nutritional deficiencies trigger developmental delays, and an immature gut microbiota is a hallmark of pathologies related to childhood undernutrition. However, how host-associated bacteria modulate the impact of nutrition on juvenile growth remains elusive. Here, using gnotobiotic Drosophila melanogaster larvae independently associated with Acetobacter pomorumWJL (ApWJL) and Lactobacillus plantarumNC8 (LpNC8), 2 model Drosophila-associated bacteria, we performed a large-scale, systematic nutritional screen based on larval growth in 40 different and precisely controlled nutritional environments. We combined these results with genome-based metabolic network reconstruction to define the biosynthetic capacities of Drosophila germ-free (GF) larvae and its 2 bacterial partners. We first established that ApWJL and LpNC8 differentially fulfill the nutritional requirements of the ex-GF larvae and parsed such difference down to individual amino acids, vitamins, other micronutrients, and trace metals. We found that Drosophila-associated bacteria not only fortify the host's diet with essential nutrients but, in specific instances, functionally compensate for host auxotrophies by either providing a metabolic intermediate or nutrient derivative to the host or by uptaking, concentrating, and delivering contaminant traces of micronutrients. Our systematic work reveals that beyond the molecular dialogue engaged between the host and its bacterial partners, Drosophila and its associated bacteria establish an integrated nutritional network relying on nutrient provision and utilization.


Asunto(s)
Acetobacter/fisiología , Drosophila melanogaster/microbiología , Drosophila melanogaster/fisiología , Lactobacillus/fisiología , Necesidades Nutricionales/fisiología , Acetobacter/genética , Acetobacter/metabolismo , Aminoácidos/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Lactobacillus/genética , Lactobacillus/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/microbiología , Larva/fisiología , Redes y Vías Metabólicas , Micronutrientes/metabolismo , Especificidad de la Especie
3.
Cell Host Microbe ; 24(1): 109-119.e6, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-30008290

RESUMEN

Animal-microbe facultative symbioses play a fundamental role in ecosystem and organismal health. Yet, due to the flexible nature of their association, the selection pressures that act on animals and their facultative symbionts remain elusive. Here we apply experimental evolution to Drosophila melanogaster associated with its growth-promoting symbiont Lactobacillus plantarum, representing a well-established model of facultative symbiosis. We find that the diet of the host, rather than the host itself, is a predominant driving force in the evolution of this symbiosis. Furthermore, we identify a mechanism resulting from the bacterium's adaptation to the diet, which confers growth benefits to the colonized host. Our study reveals that bacterial adaptation to the host's diet may be the foremost step in determining the evolutionary course of a facultative animal-microbe symbiosis.


Asunto(s)
Adaptación Fisiológica , Drosophila melanogaster/microbiología , Evolución Molecular , Interacciones Microbiota-Huesped , Lactobacillus plantarum/genética , Simbiosis , Acetato Quinasa/genética , Acetato Quinasa/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glutamina/análogos & derivados , Glutamina/metabolismo , Lactobacillus plantarum/crecimiento & desarrollo , Larva/microbiología , Microbiota , Mutación
4.
Nat Microbiol ; 2(12): 1635-1647, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28993620

RESUMEN

The microbial environment influences animal physiology. However, the underlying molecular mechanisms of such functional interactions are largely undefined. Previously, we showed that during chronic undernutrition, strains of Lactobacillus plantarum, a major commensal partner of Drosophila, promote host juvenile growth and maturation partly through enhanced expression of intestinal peptidases. By screening a transposon insertion library of Lactobacillus plantarum in gnotobiotic Drosophila larvae, we identify a bacterial cell-wall-modifying machinery encoded by the pbpX2-dlt operon that is critical to enhance host digestive capabilities and promote animal growth and maturation. Deletion of this operon leads to bacterial cell wall alteration with a complete loss of D-alanylation of teichoic acids. We show that L. plantarum cell walls bearing D-alanylated teichoic acids are directly sensed by Drosophila enterocytes to ensure optimal intestinal peptidase expression and activity, juvenile growth and maturation during chronic undernutrition. We thus conclude that besides peptidoglycan, teichoic acid modifications participate in the host-commensal bacteria molecular dialogue occurring in the intestine.


Asunto(s)
Drosophila/crecimiento & desarrollo , Drosophila/microbiología , Lactobacillus plantarum/metabolismo , Desnutrición/metabolismo , Simbiosis , Ácidos Teicoicos/metabolismo , Alanina/metabolismo , Animales , Fenómenos Biológicos , Pared Celular/metabolismo , Drosophila/genética , Genes Bacterianos/genética , Lactobacillus plantarum/genética , Larva/genética , Larva/crecimiento & desarrollo , Larva/microbiología , Microbiota/fisiología , Mutagénesis , Peptidoglicano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...