Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203299

RESUMEN

Glioblastoma (GBM) is the most aggressive brain tumor, still considered incurable. In this study, conducted on primary GBM stem cells (GSCs), specifically selected as the most therapy-resistant, we examined the efficacy of luteolin, a natural flavonoid, as an anti-tumoral compound. Luteolin is known to impact the sphingolipid rheostat, a pathway regulated by the proliferative sphingosine-1-phosphate (S1P) and the proapoptotic ceramide (Cer), and implicated in numerous oncopromoter biological processes. Here, we report that luteolin is able to inhibit the expression of SphK1/2, the two kinases implicated in S1P formation, and to increase the expression of both SGPL1, the lyase responsible for S1P degradation, and CERS1, the ceramide synthase 1, thus shifting the balance toward the production of ceramide. In addition, luteolin proved to decrease the expression of protumoral signaling as MAPK, RAS/MEK/ERK and PI3K/AKT/mTOR and cyclins involved in cell cycle progression. In parallel, luteolin succeeded in upregulation of proapoptotic mediators as caspases and Bcl-2 family and cell cycle controllers as p53 and p27. Furthermore, luteolin determined the shutdown of autophagy contributing to cell survival. Overall, our data support the use of luteolin as add-on therapy, having demonstrated a good ability in impairing GSC viability and survival and increasing cell sensitivity to TMZ.


Asunto(s)
Glioblastoma , Lisofosfolípidos , Esfingolípidos , Esfingosina/análogos & derivados , Humanos , Glioblastoma/tratamiento farmacológico , Luteolina/farmacología , Fosfatidilinositol 3-Quinasas , Ceramidas
2.
Sci Rep ; 11(1): 14462, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262056

RESUMEN

Peripheral Nerve Injury (PNI) represents a major clinical and economic burden. Despite the ability of peripheral neurons to regenerate their axons after an injury, patients are often left with motor and/or sensory disability and may develop chronic pain. Successful regeneration and target organ reinnervation require comprehensive transcriptional changes in both injured neurons and support cells located at the site of injury. The expression of most of the genes required for axon growth and guidance and for synapsis formation is repressed by a single master transcriptional regulator, the Repressor Element 1 Silencing Transcription factor (REST). Sustained increase of REST levels after injury inhibits axon regeneration and leads to chronic pain. As targeting of transcription factors is challenging, we tested whether modulation of REST activity could be achieved through knockdown of carboxy-terminal domain small phosphatase 1 (CTDSP1), the enzyme that stabilizes REST by preventing its targeting to the proteasome. To test whether knockdown of CTDSP1 promotes neurotrophic factor expression in both support cells located at the site of injury and in peripheral neurons, we transfected mesenchymal progenitor cells (MPCs), a type of support cells that are present at high concentrations at the site of injury, and dorsal root ganglion (DRG) neurons with REST or CTDSP1 specific siRNA. We quantified neurotrophic factor expression by RT-qPCR and Western blot, and brain-derived neurotrophic factor (BDNF) release in the cell culture medium by ELISA, and we measured neurite outgrowth of DRG neurons in culture. Our results show that CTDSP1 knockdown promotes neurotrophic factor expression in both DRG neurons and the support cells MPCs, and promotes DRG neuron regeneration. Therapeutics targeting CTDSP1 activity may, therefore, represent a novel epigenetic strategy to promote peripheral nerve regeneration after PNI by promoting the regenerative program repressed by injury-induced increased levels of REST in both neurons and support cells.


Asunto(s)
Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Fosfoproteínas Fosfatasas/genética , Proteínas Represoras/metabolismo , Animales , Axones/fisiología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Humanos , Células Madre Mesenquimatosas , Factores de Crecimiento Nervioso/metabolismo , Proyección Neuronal/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Ratas Sprague-Dawley , Proteínas Represoras/genética , Nervio Ciático/lesiones
3.
RNA ; 22(6): 883-95, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27095027

RESUMEN

Synthesis and regulation of catecholamine neurotransmitters in the central nervous system are implicated in the pathogenesis of a number of neuropsychiatric disorders. To identify factors that regulate the presynaptic synthesis of catecholamines, we tested the hypothesis that the rate-limiting enzyme of the catecholamine biosynthetic pathway, tyrosine hydroxylase (TH), is locally synthesized in axons and presynaptic nerve terminals of noradrenergic neurons. To isolate pure axonal mRNA and protein, rat superior cervical ganglion sympathetic neurons were cultured in compartmentalized Campenot chambers. qRT-PCR and RNA in situ hybridization analyses showed that TH mRNA is present in distal axons. Colocalization experiments with nerve terminal marker proteins suggested that both TH mRNA and protein localize in regions of the axon that resemble nerve terminals (i.e., synaptic boutons). Analysis of polysome-bound RNA showed that TH mRNA is present in polysomes isolated from distal axons. Metabolic labeling of axonally synthesized proteins labeled with the methionine analog, L-azidohomoalanine, showed that TH is locally synthesized in axons. Moreover, the local transfection and translation of exogenous TH mRNA into distal axons facilitated axonal dopamine synthesis. Finally, using chimeric td-Tomato-tagged constructs, we identified a sequence element within the TH 3'UTR that is required for the axonal localization of the reporter mRNA. Taken together, our results provide the first direct evidence that TH mRNA is trafficked to the axon and that the mRNA is locally translated. These findings raise the interesting possibility that the biosynthesis of the catecholamine neurotransmitters is locally regulated in the axon and/or presynaptic nerve terminal.


Asunto(s)
Axones/enzimología , Neuronas/enzimología , ARN Mensajero/genética , Sistema Nervioso Simpático/citología , Tirosina 3-Monooxigenasa/genética , Regiones no Traducidas 3' , Animales , Dopamina/biosíntesis , Ratas , Ratas Sprague-Dawley
4.
Dev Neurobiol ; 74(3): 333-50, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24151253

RESUMEN

Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3' untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Overexpression of a chimeric reporter mRNA with the COXIV zipcode competed with the axonal trafficking of endogenous COXIV mRNA, and led to attenuated axon growth in SCG neurons. Here, we show that exogenous expression of the COXIV zipcode in cultured SCG neurons also results in the reduction of local ATP levels and increases levels of reactive oxygen species (ROS) in the axon. We took advantage of this "competition" phenotype to investigate the in vivo significance of axonal transport of COXIV mRNA. Toward this end, we generated transgenic mice expressing a fluorescent reporter fused to COXIV zipcode under a forebrain-specific promoter. Immunohistological analyses and RT-PCR analyses of RNA from the transgenic mouse brain showed expression of the reporter in the deep layer neurons in the pre-frontal and frontal cortex. Consistent with the in vitro studies, we observed increased ROS levels in neurons of these transgenic animals. A battery of behavioral tests on transgenic mice expressing the COXIV zipcode revealed an "anxiety-like" behavioral phenotype, suggesting an important role for axonal trafficking of nuclear-encoded mitochondrial mRNAs in neuronal physiology and animal behavior.


Asunto(s)
Ansiedad/fisiopatología , Transporte Axonal , Axones/metabolismo , Mitocondrias/fisiología , Neuronas/fisiología , ARN Mensajero/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/fisiología , Células Cultivadas , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Conducta Exploratoria/fisiología , Lóbulo Frontal/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mitocondrial , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Estrés Psicológico
5.
J Neurosci ; 33(17): 7165-74, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23616526

RESUMEN

Axonal protein synthesis is a complex process involving selective mRNA localization and translational regulation. In this study, using in situ hybridization and metabolic labeling, we show that the mRNAs encoding eukaryotic translation initiation factors eIF2B2 and eIF4G2 are present in the axons of rat sympathetic neurons and are locally translated. We also report that a noncoding microRNA, miR16, modulates the axonal expression of eIF2B2 and eIF4G2. Transfection of axons with precursor miR16 and anti-miR16 showed that local miR16 levels modulated axonal eIF2B2 and eIF4G2 mRNA and protein levels, as well as axon outgrowth. siRNA-mediated knock-down of axonal eIF2B2 and eIF4G2 mRNA also resulted in a significant decrease in axonal eIF2B2 and eIF4G2 protein. Moreover, results of metabolic labeling studies showed that downregulation of axonal eIF2B2 and eIF4G2 expression also inhibited local protein synthesis and axon growth. Together, these data provide evidence that miR16 mediates axonal growth, at least in part, by regulating the local protein synthesis of eukaryotic translation initiation factors eIF2B2 and eIF4G2 in the axon.


Asunto(s)
Fibras Adrenérgicas/metabolismo , Axones/metabolismo , Factor 2B Eucariótico de Iniciación/biosíntesis , Factor 4G Eucariótico de Iniciación/biosíntesis , Biosíntesis de Proteínas/fisiología , Fibras Adrenérgicas/fisiología , Animales , Axones/fisiología , Células Cultivadas , Regulación hacia Abajo/fisiología , Factor 2B Eucariótico de Iniciación/antagonistas & inhibidores , Factor 2B Eucariótico de Iniciación/fisiología , Factor 4G Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4G Eucariótico de Iniciación/fisiología , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Ganglio Cervical Superior/metabolismo , Ganglio Cervical Superior/fisiología
6.
Mol Cell Neurosci ; 49(3): 263-70, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22209705

RESUMEN

To date, it has been demonstrated that axonal mRNA populations contain a large number of nuclear-encoded mRNAs for mitochondrial proteins. Here, we report that the mRNA encoding ATP synthase subunit 9 (ATP5G1), a key component of Complex V of the oxidative phosphorylation chain, is present in the axons of rat primary sympathetic neurons, as judged by in situ hybridization and qRT-PCR methodology. Results of metabolic labeling studies establish that this nuclear-encoded mRNA is translated in the axon. The siRNA-mediated knock-down of axonal ATP5G1 mRNA resulted in a significant reduction of axonal ATP5G1 protein and ATP levels. Silencing of local ATP5G1 expression enhanced the production of local reactive oxygen species (ROS). Importantly, reduction in the levels of ATP5G1 expression resulted in a marked attenuation in the rate of elongation of the axon. Exposure of the distal axons to nordihydroguaiaretic acid (NDGA), a ROS scavenger, mitigated the reduction in the rate of axon elongation observed after knock-down of ATP5G1. Taken together, these data call attention to the key regulatory role that local translation of nuclear-encoded mitochondrial mRNAs plays in energy metabolism and growth of the axon.


Asunto(s)
Adenosina Trifosfato/metabolismo , Axones/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/genética , Animales , Axones/patología , Células Cultivadas , Mitocondrias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley
7.
Mol Cell Neurosci ; 42(2): 102-115, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19520167

RESUMEN

We have developed a compartmentalised culture model for the purification of axonal mRNA from embryonic, neonatal and adult rat dorsal root ganglia. This mRNA was used un-amplified for RT-qPCR. We assayed for the presence of axonal mRNAs encoding molecules known to be involved in axon growth and guidance. mRNAs for beta-actin, beta-tubulin, and several molecules involved in the control of actin dynamics and signalling during axon growth were found, but mRNAs for microtubule-associated proteins, integrins and cell surface adhesion molecules were absent. Quantification of beta-actin mRNA by means of qPCR showed that the transcript is present at the same level in embryonic, newborn and adult axons. Using the photoconvertible reporter Kaede we showed that there is local translation of beta-actin in axons, the rate being increased by axotomy. Knock down of beta-actin mRNA by RNAi inhibited the regeneration of new axon growth cones after in vitro axotomy, indicating that local translation of actin-related molecules is important for successful axon regeneration.


Asunto(s)
Axones/fisiología , Ganglios Espinales , Conos de Crecimiento/fisiología , Regeneración Nerviosa/fisiología , ARN Mensajero/metabolismo , Actinas/genética , Animales , Animales Recién Nacidos , Axotomía , Citoesqueleto/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología , Ganglios Espinales/citología , Ganglios Espinales/fisiología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Receptores de Superficie Celular/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transducción de Señal/genética , Técnicas de Cultivo de Tejidos
8.
Regen Med ; 3(6): 907-23, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18947312

RESUMEN

The glial scar that forms after an injury to the CNS contains molecules that are inhibitory to axon growth. Understanding of the mechanisms of inhibition has allowed the development of therapeutic strategies aimed at promoting axon regeneration. Promising results have been obtained in animal models, and some therapies are undergoing clinical trials. This offers great hope for achievement of functional recovery after CNS injury.


Asunto(s)
Axones/fisiología , Sistema Nervioso Central/fisiología , Espacio Extracelular/metabolismo , Regeneración Nerviosa , Enfermedades del Sistema Nervioso/terapia , Animales , Humanos , Vaina de Mielina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...