Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Water Res ; 267: 122536, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39369511

RESUMEN

Reverse osmosis membranes are intended to constitute a complete physical barrier against nanometric-sized pathogens such as enteric viruses. Literature describes that low-pressure reverse osmosis achieves high viral removal rates (above 5 log), surpassing those of ultrafiltration (1 to 3 log). However, these studies often used individual viruses and high feed viral concentrations (above 109 virus L-1), greater than typical viral concentrations present in the environment like groundwater, to promote virus detection in the permeate. These high concentrations can promote viral aggregation, potentially affecting the observed retention. This work evaluates the simultaneous elimination of three viruses during the production of drinking water by low-pressure reverse osmosis: two enteric viruses (adenovirus 41 and coxsackievirus-B5) and bacteriophage MS2, a widely used virus surrogate in the literature. The permeates produced by low-pressure reverse osmosis were concentrated to allow virus detection in permeate at lower feed concentrations (106 virus L-1) while staying above the limits of detection and quantification. Experiments were carried out on two pilot plants of different scales (laboratory and semi-industrial) to assess the potential effect of the number of membranes and O-rings on virus retention. The effect of the volume concentration factor on low-pressure reverse osmosis efficiency was evaluated for each scale. Results indicate an average viral reduction of 6 log (up to 7 log), regardless of the size of the virus and/or the scale of LPRO pilot. For the semi-industrial scale, better retention was observed as the volume concentration factor increased. However, viruses were still present in the permeate for each scale (even if close to the detection limit), indicating that retention was not complete. At the same feed viral concentrations, the number of viruses recovered in the semi-industrial scale permeates was higher than in the laboratory scale. A 24-fold greater number of membranes and O-rings used for the semi-industrial scale showed that micro-leaks through O-rings could be responsible for the passage of viruses into the permeate.

2.
Sci Total Environ ; 833: 155121, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35398418

RESUMEN

Leptospirosis is a neglected zoonotic disease with a worldwide distribution caused by bacterial pathogenic Leptospira. Rodents are considered as the main reservoir of Leptospira and transmission usually occurs through exposure to urine-contaminated environment. However, interactions between environment, rodent reservoir and human leptospirosis remain poorly studied. Here, we evaluated the concentration of Leptospira in surface water and captured rats in the city of Paris (France) from 2018 to 2020 using an integrity qPCR (Quantitative Polymerase Chain Reaction). All environmental samples (n = 1031) were positive for saprophytic Leptospira but pathogenic Leptospira P1 group were only found in 40% (n = 363; 2018) to 0% (n = 264; 2020) of samples. In the same time, analysis of 200 brown rat corpses trapped in the city, showed about 15% of positivity for Leptospira but the different method used for rats conservation (based on presence or absence of conservative agent) showed important variations in the Leptospira prevalence. Metagenomic analysis, based on rrs gene sequencing, was also carried out to evaluate the distribution of Leptospira in samples. Results could indicate that some species of Leptospira are found in surface waters as well as rats, but further study is needed to accurately describe the nature of the link between these two reservoirs. Quantification of Leptospira and pathogenic species description circulating inside animal reservoir living in the vicinity of freshwater in urban areas, will be helpful to understand the eco-epidemiology of leptospirosis and to establish prevention and intervention strategies, especially in the context of organization of recreative activity events in these urban areas.


Asunto(s)
Leptospira , Leptospirosis , Animales , Agua Dulce , Leptospira/genética , Leptospirosis/epidemiología , Leptospirosis/veterinaria , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...