Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Antiviral Res ; 217: 105700, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562608

RESUMEN

Here, we report on the anti-SARS-CoV-2 activity of PRO-2000, a sulfonated polyanionic compound. In Vero cells infected with the Wuhan, alpha, beta, delta or omicron variant, PRO-2000 displayed EC50 values of 1.1 µM, 2.4 µM, 1.3 µM, 2.1 µM and 0.11 µM, respectively, and an average selectivity index (i.e. ratio of cytotoxic versus antiviral concentration) of 172. Its anti-SARS-CoV-2 activity was confirmed by virus yield assays in Vero cells, Caco2 cells and A549 cells overexpressing ACE2 and TMPRSS2 (A549-AT). Using pseudoviruses bearing the SARS-CoV-2 spike (S), PRO-2000 was shown to block the S-mediated pseudovirus entry in Vero cells and A549-AT cells, with EC50 values of 0.091 µM and 1.6 µM, respectively. This entry process is initiated by interaction of the S glycoprotein with angiotensin-converting enzyme 2 (ACE2) and heparan sulfate proteoglycans. Surface Plasmon Resonance (SPR) studies showed that PRO-2000 binds to the receptor-binding domain (RBD) of S with a KD of 1.6 nM. Similar KD values (range: 1.2 nM-2.1 nM) were obtained with the RBDs of the alpha, beta, delta and omicron variants. In an SPR neutralization assay, PRO-2000 had no effect on the interaction between the RBD and ACE2. Instead, PRO-2000 was proven to inhibit binding of the RBD to a heparin-coated sensor chip, yielding an IC50 of 1.1 nM. To conclude, PRO-2000 has the potential to inhibit a broad range of SARS-CoV-2 variants by blocking the heparin-binding site on the S protein.


Asunto(s)
Antivirales , COVID-19 , Chlorocebus aethiops , Animales , Humanos , Antivirales/farmacología , Enzima Convertidora de Angiotensina 2 , Células CACO-2 , Células Vero , SARS-CoV-2 , Unión Proteica , Glicoproteína de la Espiga del Coronavirus
2.
Pharmaceutics ; 15(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37111645

RESUMEN

DNA-based antibody therapy seeks to administer the encoding nucleotide sequence rather than the antibody protein. To further improve the in vivo monoclonal antibody (mAb) expression, a better understanding of what happens after the administration of the encoding plasmid DNA (pDNA) is required. This study reports the quantitative evaluation and localization of the administered pDNA over time and its association with corresponding mRNA levels and systemic protein concentrations. pDNA encoding the murine anti-HER2 4D5 mAb was administered to BALB/c mice via intramuscular injection followed by electroporation. Muscle biopsies and blood samples were taken at different time points (up to 3 months). In muscle, pDNA levels decreased 90% between 24 h and one week post treatment (p < 0.0001). In contrast, mRNA levels remained stable over time. The 4D5 antibody plasma concentrations reached peak levels at week two followed by a slow decrease (50% after 12 weeks, p < 0.0001). Evaluation of pDNA localization revealed that extranuclear pDNA was cleared fast, whereas the nuclear fraction remained relatively stable. This is in line with the observed mRNA and protein levels over time and indicates that only a minor fraction of the administered pDNA is ultimately responsible for the observed systemic mAb levels. In conclusion, this study demonstrates that durable expression is dependent on the nuclear uptake of the pDNA. Therefore, efforts to increase the protein levels upon pDNA-based gene therapy should focus on strategies to increase both cellular entry and migration of the pDNA into the nucleus. The currently applied methodology can be used to guide the design and evaluation of novel plasmid-based vectors or alternative delivery methods in order to achieve a robust and prolonged protein expression.

3.
Front Immunol ; 14: 1050037, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895570

RESUMEN

Pre-vaccination SARS-CoV-2 infection can boost protection elicited by COVID-19 vaccination and post-vaccination breakthrough SARS-CoV-2 infection can boost existing immunity conferred by COVID-19 vaccination. Such 'hybrid immunity' is effective against SARS-CoV-2 variants. In order to understand 'hybrid immunity' at the molecular level we studied the complementarity determining regions (CDR) of anti-RBD (receptor binding domain) antibodies isolated from individuals with 'hybrid immunity' as well as from 'naive' (not SARS-CoV-2 infected) vaccinated individuals. CDR analysis was done by liquid chromatography/mass spectrometry-mass spectrometry. Principal component analysis and partial least square differential analysis showed that COVID-19 vaccinated people share CDR profiles and that pre-vaccination SARS-CoV-2 infection or breakthrough infection further shape the CDR profile, with a CDR profile in hybrid immunity that clustered away from the CDR profile in vaccinated people without infection. Thus, our results show a CDR profile in hybrid immunity that is distinct from the vaccination-induced CDR profile.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Regiones Determinantes de Complementariedad/genética , Vacunas contra la COVID-19
4.
Autoimmun Rev ; 22(4): 103288, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36738952

RESUMEN

A high prevalence of antinuclear antibodies (ANA) in COVID-19 has been insinuated, but the nature of the target antigens is poorly understood. We studied ANA by indirect immunofluorescence in 229 individuals with COVID-19. The target antigens of high titer ANA (≥1:320) were determined by immunoprecipitation (IP) combined with liquid-chromatography-mass spectrometry (MS). High titer ANA (≥1:320) were found in 14 (6%) of the individuals with COVID-19. Of the 14 COVID-19 cases with high titer ANA, 6 had an underlying autoimmune disease and 5 a malignancy. IP-MS revealed known target antigens associated with autoimmune disease as well as novel autoantigens, including CDK9 (in systemic sclerosis) and RNF20, RCC1 and TRIP13 (in malignancy). The novel autoantigens were confirmed by IP-Western blotting. In conclusion, in depth analysis of the targets of high titer ANA revealed novel autoantigens in systemic sclerosis and in malignant disease.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Neoplasias , Esclerodermia Sistémica , Humanos , Autoanticuerpos/análisis , Anticuerpos Antinucleares , Autoantígenos , Quinasa 9 Dependiente de la Ciclina , Proteínas Nucleares , Proteínas de Ciclo Celular , Factores de Intercambio de Guanina Nucleótido , ATPasas Asociadas con Actividades Celulares Diversas
5.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835174

RESUMEN

Extracellular vesicles (EVs) have attracted great attention as potential biomarkers for cancer diagnostics. Although several technologies have been developed for EV detection, many of them are still not applicable to clinical settings as they rely on complex EV isolation processes, while lacking sensitivity, specificity or standardization. To solve this problem, we have developed a sensitive breast cancer-specific EV detection bioassay directly in blood plasma using a fiber-optic surface plasmon resonance (FO-SPR) biosensor, previously calibrated with recombinant EVs. First, we established a sandwich bioassay to detect SK-BR-3 EVs by functionalizing the FO-SPR probes with anti-HER2 antibodies. A calibration curve was built using an anti-HER2/Banti-CD9 combination, resulting in an LOD of 2.1 × 107 particles/mL in buffer and 7 × 108 particles/mL in blood plasma. Next, we investigated the potential of the bioassay to detect MCF7 EVs in blood plasma using an anti-EpCAM/Banti-mix combination, obtaining an LOD of 1.1 × 10 8 particles/mL. Finally, the specificity of the bioassay was proven by the absence of signal when testing plasma samples from 10 healthy people unknown to be diagnosed with breast cancer. The remarkable sensitivity and specificity of the developed sandwich bioassay together with the advantages of the standardized FO-SPR biosensor highlight outstanding potential for the future of EV analysis.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Vesículas Extracelulares , Femenino , Humanos , Biomarcadores , Técnicas Biosensibles/métodos , Neoplasias de la Mama/diagnóstico , Resonancia por Plasmón de Superficie/métodos
6.
Small Methods ; 7(3): e2201477, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642827

RESUMEN

Advancements in lab-on-a-chip technologies have revolutionized the single-cell analysis field. However, an accessible platform for in-depth screening and specific retrieval of single cells, which moreover enables studying diverse cell types and performing various downstream analyses, is still lacking. As a solution, FLUIDOT is introduced, a versatile microfluidic platform incorporating customizable microwells, optical tweezers and an interchangeable cell-retrieval system. Thanks to its smart microfluidic design, FLUIDOT is straightforward to fabricate and operate, rendering the technology widely accessible. The performance of FLUIDOT is validated and its versatility is subsequently demonstrated in two applications. First, drug tolerance in yeast cells is studied, resulting in the discovery of two treatment-tolerant populations. Second, B cells from convalescent COVID-19 patients are screened, leading to the discovery of highly affine, in vitro neutralizing monoclonal antibodies against SARS-CoV-2. Owing to its performance, flexibility, and accessibility, it is foreseen that FLUIDOT will enable phenotypic and genotypic analysis of diverse cell samples and thus elucidate unexplored biological questions.


Asunto(s)
COVID-19 , Microfluídica , Humanos , Microfluídica/métodos , SARS-CoV-2 , Anticuerpos , Saccharomyces cerevisiae/genética
7.
Cell Rep ; 42(1): 112014, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36681898

RESUMEN

The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike. Most IgGs that do not neutralize Omicron bind either entirely monovalently or have some (22%-50%) monovalent occupancy. Cleavage of bivalent-binding IgGs to Fabs abolishes neutralization and binding affinity, with disproportionate loss of activity against Omicron pseudovirus and spike. These results suggest that VoC-resistant antibodies overcome mutagenic substitution via avidity. Hence, vaccine strategies targeting future SARS-CoV-2 variants should consider epitope display with spacing and organization identical to trimeric spike.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Etnicidad , Epítopos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Pruebas de Neutralización
8.
Front Oncol ; 12: 1017612, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263202

RESUMEN

DNA-encoded delivery and in vivo expression of antibody therapeutics presents an innovative alternative to conventional protein production and administration, including for cancer treatment. To support clinical translation, we evaluated this approach in 18 40-45 kg sheep, using a clinical-matched intramuscular electroporation (IM EP) and hyaluronidase-plasmid DNA (pDNA) coformulation setup. Two cohorts of eight sheep received either 1 or 4 mg pDNA encoding an ovine anti-cancer embryonic antigen (CEA) monoclonal antibody (mAb; OVAC). Results showed a dose-response with average maximum serum concentrations of respectively 0.3 and 0.7 µg/ml OVAC, 4-6 weeks after IM EP. OVAC was detected in all 16 sheep throughout the 6-week follow-up, and no anti-OVAC antibodies were observed. Another, more exploratory, cohort of two sheep received a 12 mg pOVAC dose. Both animals displayed a similar dose-dependent mAb increase and expression profile in the first two weeks. However, in one animal, an anti-OVAC antibody response led to loss of mAb detection four weeks after IM EP. In the other animal, no anti-drug antibodies were observed. Serum OVAC concentrations peaked at 4.9 µg/ml 6 weeks after IM EP, after which levels gradually decreased but remained detectable around 0.2 to 0.3 µg/ml throughout a 13-month follow-up. In conclusion, using a delivery protocol that is currently employed in clinical Phase 1 studies of DNA-based antibodies, we achieved robust and prolonged in vivo production of anti-cancer DNA-encoded antibody therapeutics in sheep. The learnings from this large-animal model regarding the impact of pDNA dose and host immune response on the expressed mAb pharmacokinetics can contribute to advancing clinical translation.

9.
iScience ; 25(8): 104705, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35813873

RESUMEN

Treatment with neutralizing monoclonal antibodies (mAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to COVID-19 management. Unfortunately, SARS-CoV-2 variants escape several of these recently approved mAbs, highlighting the need for additional discovery and development. In a convalescent patient with COVID-19, we identified six mAbs, classified in four epitope groups, that potently neutralized SARS-CoV-2 D614G, beta, gamma, and delta infection in vitro, with three mAbs neutralizing omicron as well. In hamsters, mAbs 3E6 and 3B8 potently cured infection with SARS-CoV-2 Wuhan, beta, and delta when administered post-viral infection at 5 mg/kg. Even at 0.2 mg/kg, 3B8 still reduced viral titers. Intramuscular delivery of DNA-encoded 3B8 resulted in in vivo mAb production of median serum levels up to 90 µg/mL, and protected hamsters against delta infection. Overall, our data mark 3B8 as a promising candidate against COVID-19, and highlight advances in both the identification and gene-based delivery of potent human mAbs.

10.
Viruses ; 14(6)2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35746728

RESUMEN

To mitigate the massive COVID-19 burden caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), several vaccination campaigns were initiated. We performed a single-center observational trial to monitor the mid- (3 months) and long-term (10 months) adaptive immune response and to document breakthrough infections (BTI) in healthcare workers (n = 84) upon BNT162b2 vaccination in a real-world setting. Firstly, serology was determined through immunoassays. Secondly, antibody functionality was analyzed via in vitro binding inhibition and pseudovirus neutralization and circulating receptor-binding domain (RBD)-specific B cells were assessed. Moreover, the induction of SARS-CoV-2-specific T cells was investigated by an interferon-γ release assay combined with flowcytometric profiling of activated CD4+ and CD8+ T cells. Within individuals that did not experience BTI (n = 62), vaccine-induced humoral and cellular immune responses were not correlated. Interestingly, waning over time was more pronounced within humoral compared to cellular immunity. In particular, 45 of these 62 subjects no longer displayed functional neutralization against the delta variant of concern (VoC) at long-term follow-up. Noteworthily, we reported a high incidence of symptomatic BTI cases (17.11%) caused by alpha and delta VoCs, although vaccine-induced immunity was only slightly reduced compared to subjects without BTI at mid-term follow-up.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , Bélgica , Linfocitos T CD8-positivos , COVID-19/epidemiología , COVID-19/prevención & control , Progresión de la Enfermedad , Estudios de Seguimiento , Personal de Salud , Humanos , Inmunidad Celular , Inmunidad Humoral , Incidencia , SARS-CoV-2/genética , Vacunación
11.
Biosens Bioelectron ; 208: 114189, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35366427

RESUMEN

Therapeutic drug monitoring (TDM) of adalimumab (ADM) at the point-of-care (POC) is key to prevent loss of response but has not been accomplished to date because true POC testing solutions are still lacking. Here, we present a novel "whole blood in - result out" self-powered microfluidic chip for detecting ADM within 30 min to enable TDM at POC. Hereto, we first demonstrated on-chip plasma separation from whole blood, followed by downscaling an ADM ELISA with maintained specificity and sensitivity in plasma. This assay was then performed on a robust and easy-to-use microfluidic chip we designed based on (i)SIMPLE technology, allowing autonomous function upon single finger press activation, which was successfully validated with patient samples. Herein, we prove the potential of our technology to detect targets starting from whole blood introduced directly on-chip and to integrate various immunoassays, both for TDM and other in vitro diagnostics applications, like infectious diseases.


Asunto(s)
Enfermedades Autoinmunes , Técnicas Biosensibles , Adalimumab/uso terapéutico , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/tratamiento farmacológico , Monitoreo de Drogas , Humanos , Dispositivos Laboratorio en un Chip , Sistemas de Atención de Punto , Pruebas en el Punto de Atención
12.
J Immunol Methods ; 503: 113245, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35248526

RESUMEN

A multiplex assay for the quantitation of immunoglobulin G (IgG) serum antibodies directed against Clostridium tetani toxin (TT), Corynebacterium diphtheriae toxoid (DTxd), and the Bordetella pertussis antigens pertussis toxin (PT), filamentous hemagglutinin (FHA) and pertactin (Prn) was developed on an Evalution® platform to enhance the evaluation of the specific antibody response towards protein antigens in suspected humoral immunodeficiencies. Evalution® is a microfluidic and microparticle-based platform with the possibility to analyse single samples and to perform real-time kinetic measurements of antibody binding. All individual antigens were covalently linked to the carboxylated microparticles after which samples and fluorescently labelled detection antibodies were flowed over the microparticles in the microfluidic channels of the assay cartridges of the system. The developed assay showed very good sensitivity, specificity, and intra- and inter-assay coefficients of variation (CVs for the different antigens between 1.72-3.53% and 3.54-5.79%, respectively). Furthermore, the correlation of the Evalution pentaplex with a Luminex pentaplex using a panel of 48 human serum samples was excellent, with Spearman correlation coefficients between 0.936 for PT and 0.982 for DTxd (p < 0.0001 for all). Finally, we showed in a proof-of-concept experiment the potential of the Evalution® platform to simultaneously measure concentrations and binding kinetics (as a surrogate for avidity) of the IgG antibodies to the selected protein antigens. Overall, these findings show that this new Evalution pentaplex can accurately measure the antibody response to TT, DTxd, PT, FHA and Prn. It also has the potential to measure antibody binding and dissociation kinetics.


Asunto(s)
Difteria , Tétanos , Tos Ferina , Anticuerpos Antibacterianos , Bordetella pertussis , Humanos , Inmunoensayo , Inmunoglobulina G , Microfluídica , Toxina del Pertussis , Tos Ferina/diagnóstico
13.
Biosens Bioelectron ; 206: 114125, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35255315

RESUMEN

Disease treatment with advanced biological therapies such as adalimumab (ADM), although largely beneficial, is still costly and suffers from loss of response. To tackle these aspects, therapeutic drug monitoring (TDM) is proposed to improve treatment dosing and efficacy, but is often associated with long sampling-to-result workflows. Here, we present an in-house constructed ADM-sensor, allowing TDM of ADM at the doctor's office. This biosensor brings fiber optic surface plasmon resonance (FO-SPR), combined with self-powered microfluidics, to a point of care (POC) setting for the first time. After developing a rapid FO-SPR sandwich bioassay for ADM detection on a commercial FO-SPR device, this bioassay was implemented on the fully-integrated ADM-sensor. For the latter, we combined (I) a gold coated fiber optic (FO) probe for bioassay implementation and (II) an FO-SPR readout system with (III) the self-powered iSIMPLE microfluidic technology empowering plasma sample and reagent mixing on the-cartridge as well as connection to the FO-SPR readout system. With a calculated limit of detection (LOD) of 0.35 µg/mL in undiluted plasma, and a total time-to-result (TTR) within 12 min, this innovative biosensor demonstrated a comparable performance to existing POC biosensors for ADM quantification in patient plasma samples, while requiring only 1 µL of plasma. Whereas this study demonstrates great potential for FO-SPR biosensing at the POC using ADM as a model case, it also shows huge potential for bedside TDM of other drugs (e.g. other immunosuppressants, anti-epileptics and antibiotics), as the bioassay is highly amenable to adaptation.


Asunto(s)
Técnicas Biosensibles , Resonancia por Plasmón de Superficie , Adalimumab , Monitoreo de Drogas , Tecnología de Fibra Óptica , Humanos , Microfluídica , Sistemas de Atención de Punto
14.
Eng Life Sci ; 22(2): 100-114, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35140557

RESUMEN

Mammalian cells are commonly used to produce recombinant protein therapeutics, but suffer from a high cost per mg of protein produced. There is therefore great interest in improving protein yields to reduce production cost. We present an entirely novel approach to reach this goal through direct engineering of the cellular translation machinery by introducing the R98S point mutation in the catalytically essential ribosomal protein L10 (RPL10-R98S). Our data support that RPL10-R98S enhances translation levels and fidelity and reduces proteasomal activity in lymphoid Ba/F3 and Jurkat cell models. In HEK293T cells cultured in chemically defined medium, knock-in of RPL10-R98S was associated with a 1.7- to 2.5-fold increased production of four transiently expressed recombinant proteins and 1.7-fold for one out of two stably expressed proteins. In CHO-S cells, eGFP reached a 2-fold increased expression under stable but not transient conditions, but there was no production benefit for monoclonal antibodies. The RPL10-R98S associated production gain thus depends on culture conditions, cell type, and the nature of the expressed protein. Our study demonstrates the potential for using a ribosomal protein mutation for pharmaceutical protein production gains, and further research on how various factors influence RPL10-R98S phenotypes can maximize its exploitability for the mammalian protein production industry.

15.
ACS Sens ; 7(2): 477-487, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35061357

RESUMEN

The ongoing COVID-19 pandemic has emphasized the urgent need for rapid, accurate, and large-scale diagnostic tools. Next to this, the significance of serological tests (i.e., detection of SARS-CoV-2 antibodies) also became apparent for studying patients' immune status and past viral infection. In this work, we present a novel approach for not only measuring antibody levels but also profiling of binding kinetics of the complete polyclonal antibody response against the receptor binding domain (RBD) of SARS-CoV-2 spike protein, an aspect not possible to achieve with traditional serological tests. This fiber optic surface plasmon resonance (FO-SPR)-based label-free method was successfully accomplished in COVID-19 patient serum and, for the first time, directly in undiluted whole blood, omitting the need for any sample preparation. Notably, this bioassay (1) was on par with FO-SPR sandwich bioassays (traditionally regarded as more sensitive) in distinguishing COVID-19 from control samples, irrespective of the type of sample matrix, and (2) had a significantly shorter time-to-result of only 30 min compared to >1 or 4 h for the FO-SPR sandwich bioassay and the conventional ELISA, respectively. Finally, the label-free approach revealed that no direct correlation was present between antibody levels and their kinetic profiling in different COVID-19 patients, as another evidence to support previous hypothesis that antibody-binding kinetics against the antigen in patient blood might play a role in the COVID-19 severity. Taking all this into account, the presented work positions the FO-SPR technology at the forefront of other COVID-19 serological tests, with a huge potential toward other applications in need for quantification and kinetic profiling of antibodies.


Asunto(s)
COVID-19 , Resonancia por Plasmón de Superficie , Anticuerpos Antivirales , COVID-19/diagnóstico , Humanos , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Resonancia por Plasmón de Superficie/métodos
16.
Cancer Gene Ther ; 29(7): 984-992, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34754076

RESUMEN

To improve the anti-tumor efficacy of immune checkpoint inhibitors, numerous combination therapies are under clinical evaluation, including with IL-12 gene therapy. The current study evaluated the simultaneous delivery of the cytokine and checkpoint-inhibiting antibodies by intratumoral DNA electroporation in mice. In the MC38 tumor model, combined administration of plasmids encoding IL-12 and an anti-PD-1 antibody induced significant anti-tumor responses, yet similar to the monotherapies. When treatment was expanded with a DNA-based anti-CTLA-4 antibody, this triple combination significantly delayed tumor growth compared to IL-12 alone and the combination of anti-PD-1 and anti-CTLA-4 antibodies. Despite low drug plasma concentrations, the triple combination enabled significant abscopal effects in contralateral tumors, which was not the case for the other treatments. The DNA-based immunotherapies increased T cell infiltration in electroporated tumors, especially of CD8+ T cells, and upregulated the expression of CD8+ effector markers. No general immune activation was detected in spleens following either intratumoral treatment. In B16F10 tumors, evaluation of the triple combination was hampered by a high sensitivity to control plasmids. In conclusion, intratumoral gene electrotransfer allowed effective combined delivery of multiple immunotherapeutics. This approach induced responses in treated and contralateral tumors, while limiting systemic drug exposure and potentially detrimental systemic immunological effects.


Asunto(s)
Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Interleucina-12 , Neoplasias , Animales , Anticuerpos Monoclonales/administración & dosificación , Línea Celular Tumoral , ADN , Terapia Genética , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inmunoterapia , Interleucina-12/genética , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
17.
Lab Chip ; 21(19): 3627-3654, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34505611

RESUMEN

Antibodies (Abs) are among the most important class of biologicals, showcasing a high therapeutic and diagnostic value. In the global therapeutic Ab market, fully-human monoclonal Abs (FH-mAbs) are flourishing thanks to their low immunogenicity and high specificity. The rapidly emerging field of single-cell technologies has paved the way to efficiently discover mAbs by facilitating a fast screening of the antigen (Ag)-specificity and functionality of Abs expressed by B cells. This review summarizes the principles and challenges of the four key concepts to discover mAbs using these technologies, being confinement of single cells using either droplet microfluidics or microstructure arrays, identification of the cells of interest, retrieval of those cells and single-cell sequence determination required for mAb production. This review reveals the enormous potential for mix-and-matching of the above-mentioned strategies, which is illustrated by the plethora of established, highly integrated devices. Lastly, an outlook is given on the many opportunities and challenges that still lie ahead to fully exploit miniaturized single-cell technologies for mAb discovery.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Especificidad de Anticuerpos , Humanos
18.
Hum Gene Ther ; 32(19-20): 1200-1209, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482757

RESUMEN

DNA-encoded delivery of antibodies presents a labor- and cost-effective alternative to conventional antibody therapeutics. This study aims to improve the potency and safety of this approach by evaluating various plasmid backbones and expression cassettes. In vitro, antibody levels consistently improved with decreasing sizes of backbone, ranging from conventional to minimal. In vivo, following intramuscular electrotransfer in mice, the correlation was less consistent. While the largest conventional plasmid (10.2 kb) gave the lowest monoclonal antibody (mAb) levels, a regular conventional plasmid (8.6 kb) demonstrated similar levels as a minimal Nanoplasmid (6.8 kb). A reduction in size beyond a standard conventional backbone thus did not improve mAb levels in vivo. Cassette modifications, such as swapping antibody chain order or use of two versus a single encoding plasmid, significantly increased antibody expression in vitro, but failed to translate in vivo. Conversely, a significant improvement in vivo but not in vitro was found with a set of muscle-specific promoters, of which a newly engineered variant gave roughly 1.5- to 2-fold higher plasma antibody concentrations than the ubiquitous CAG promoter. In conclusion, despite the limited translation between in vitro and in vivo, we identified various clinically relevant improvements to our DNA-based antibody platform, both in potency and biosafety.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Animales , ADN , Electroporación , Ratones , Plásmidos/genética , Regiones Promotoras Genéticas
19.
Anal Chem ; 93(15): 6169-6177, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823582

RESUMEN

Antibody characterization is essential for understanding the immune system and development of diagnostics and therapeutics. Current technologies are mainly focusing on the detection of antigen-specific immunoglobulin G (IgG) using bulk singleplex measurements, which lack information on other isotypes and specificity of individual antibodies. Digital immunoassays based on nucleic acid amplification have demonstrated superior performance by allowing the detection of single molecules in a multiplex and sensitive manner. In this study, we demonstrate for the first time an immuno-rolling circle amplification (immuno-RCA) assay for the multiplex detection of three antigen-specific antibody isotypes (IgG, IgA, and IgM) and its integration with microengraving. To validate this approach, we used the autoimmune disease immune-mediated thrombotic thrombocytopenic purpura (iTTP) as the model disease with anti-ADAMTS13 autoantibodies as the diagnostic target molecules. To identify the anti-ADAMTS13 autoantibody isotypes, we designed a pool of three unique antibody-oligonucleotide conjugates for identification and subsequent amplification and visualization via RCA. To validate this approach, we first confirmed an assay specificity of >88% and a low limit of detection of 0.3 ng/mL in the spiked buffer. Subsequently, we performed a dilution series of an iTTP plasma sample for the multiplex detection of the three isotypes with higher sensitivity compared to an enzyme-linked immunosorbent assay. Finally, we demonstrated single-cell analysis of human B cells and hybridoma cells for the detection of secreted antibodies using microengraving and achieved a detection of 23.3 pg/mL secreted antibodies per hour. This approach could help to improve the understanding of antibody isotype distributions and their roles in various diseases.


Asunto(s)
Autoanticuerpos , Púrpura Trombocitopénica Trombótica , Antígenos , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G
20.
ACS Appl Mater Interfaces ; 13(2): 2316-2326, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33411502

RESUMEN

Retrieving single cells of interest from an array of microwells for further off-chip analysis is crucial in numerous biological applications. To this end, several single cell manipulation strategies have been developed, including optical tweezers (OT). OT represent a unique approach for contactless cell retrieval, but their performance is often suboptimal due to nonspecific cell adhesion to the microwell surface. In this study, we focused on improving the surface chemistry of microwell arrays to ensure efficient single cell manipulation using OT. For this purpose, the surface of an off-stoichiometry thiol-ene-epoxy (OSTE+) microwell array was grafted with polyethylene glycol (PEG) molecules with different molecular weights: PEG 360, PEG 500, PEG 2000, and a PEG Mix (an equimolar ratio of PEG 500 and PEG 2000). Contact angle measurements showed that the PEG grafting process resulted in an increased surface energy, which was stable for at least 16 weeks. Next, cell adhesion of two cell types, baker's yeast (Saccharomyces cerevisiae) and human B cells, to surfaces treated with different PEGs was evaluated by registering the presence of cellular motion inside microwells and the efficiency of optical lifting of cells that display motion. Optimal results were obtained for surfaces grafted with PEG 2000 and PEG Mix, reaching an average fraction of cells with motion of over 93% and an average lifting efficiency of over 96% for both cell types. Upon the integration of this microwell array with a polydimethylsiloxane (PDMS) microfluidic channel, PEG Mix resulted in proper washing of non-seeded cells. We further demonstrated the wide applicability of the platform by manipulating non-responding yeast cells to antifungal treatment and B cells expressing surface IgG antibodies. The combination of the optimized microwell surface with continuous microfluidics results in a powerful and versatile platform, allowing high-throughput single cell studies and retrieval of target cells for off-chip analysis.


Asunto(s)
Micromanipulación/instrumentación , Pinzas Ópticas , Polietilenglicoles/química , Análisis de la Célula Individual/instrumentación , Compuestos de Sulfhidrilo/química , Linfocitos B/citología , Adhesión Celular , Células Cultivadas , Compuestos Epoxi/química , Diseño de Equipo , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Saccharomyces cerevisiae/citología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...