Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 931307, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992693

RESUMEN

Synthetic antibodies have been engineered against a wide variety of antigens with desirable biophysical, biochemical, and pharmacological properties. Here, we describe the generation and characterization of synthetic antigen-binding fragments (Fabs) against Notch-1. Three single-framework synthetic Fab libraries, named S, F, and modified-F, were screened against the recombinant human Notch-1 extracellular domain using phage display. These libraries were built on a modified trastuzumab framework, containing two or four diversified complementarity-determining regions (CDRs) and different CDR diversity designs. In total, 12 Notch-1 Fabs were generated with 10 different CDRH3 lengths. These Fabs possessed a high affinity for Notch-1 (sub-nM to mid-nM KDapp values) and exhibited different binding profiles (mono-, bi-or tri-specific) toward Notch/Jagged receptors. Importantly, we showed that screening focused diversity libraries, implementing next-generation sequencing approaches, and fine-tuning the CDR length diversity provided improved binding solutions for Notch-1 recognition. These findings have implications for antibody library design and antibody phage display.

2.
BMC Cancer ; 21(1): 270, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33711962

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) is a target for cancer therapy as it is overexpressed in a wide variety of cancers. Therapeutic antibodies that bind EGFR are being evaluated in clinical trials as imaging agents for positron emission tomography and image-guided surgery. However, some of these antibodies have safety concerns such as infusion reactions, limiting their use in imaging applications. Nimotuzumab is a therapeutic monoclonal antibody that is specific for EGFR and has been used as a therapy in a number of countries. METHODS: Formulation of IRDye800CW-nimotuzumab for a clinical trial application was prepared. The physical, chemical, and pharmaceutical properties were tested to develop the specifications to determine stability of the product. The acute and delayed toxicities were tested and IRDye800CW-nimotuzumab was determined to be non-toxic. Non-compartmental pharmacokinetics analysis was used to determine the half-life of IRDye800CW-nimotuzumab. RESULTS: IRDye800CW-nimotuzumab was determined to be non-toxic from the acute and delayed toxicity study. The half-life of IRDye800CW-nimotuzumab was determined to be 38 ± 1.5 h. A bi-exponential analysis was also used which gave a t1/2 alpha of 1.5 h and t1/2 beta of 40.8 h. CONCLUSIONS: Here, we show preclinical studies demonstrating that nimotuzumab conjugated to IRDye800CW is safe and does not exhibit toxicities commonly associated with EGFR targeting antibodies.


Asunto(s)
Drogas en Investigación/administración & dosificación , Inmunoconjugados/administración & dosificación , Neoplasias/diagnóstico por imagen , Imagen Óptica/métodos , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales Humanizados/toxicidad , Bencenosulfonatos/administración & dosificación , Bencenosulfonatos/farmacocinética , Bencenosulfonatos/toxicidad , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Estabilidad de Medicamentos , Drogas en Investigación/farmacología , Drogas en Investigación/toxicidad , Receptores ErbB/antagonistas & inhibidores , Femenino , Semivida , Humanos , Inmunoconjugados/farmacocinética , Inmunoconjugados/toxicidad , Indoles/administración & dosificación , Indoles/farmacocinética , Indoles/toxicidad , Aplicación de Nuevas Drogas en Investigación , Masculino , Ratones , Neoplasias/patología , Neoplasias/cirugía , Cirugía Asistida por Computador/métodos , Pruebas de Toxicidad Aguda , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Sci Rep ; 10(1): 18549, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122707

RESUMEN

Overexpression of insulin growth factor receptor type 1 (IGF-1R) is observed in many cancers. Antibody drug conjugates (ADCs) with PEGylated maytansine (PEG6-DM1) show promise in vitro. We developed PEG6-DM1 ADCs with low and high drug to antibody ratios (DAR) using an anti-IGF-1R antibody cixutumumab (IMC-A12). Conjugates with low (cixutumumab-PEG6-DM1-Low) and high (cixutumumab-PEG6-DM1-High) DAR as 3.4 and 7.2, respectively, were generated. QC was performed by UV spectrophotometry, HPLC, bioanalyzer, and biolayer-interferometry. We compared the in vitro binding and internalization rates of the ADCs in IGF-1R-positive MCF-7/Her18 cells. We radiolabeled the ADCs with 111In and used microSPECT/CT imaging and ex vivo biodistribution to understand their in vivo behavior in MCF-7/Her18 xenograft mice. The therapeutic potential of the ADC was studied in vitro and in mouse xenograft. Internalization rates of all ADCs was high and increased over 48 h and EC50 was in the low nanomolar range. MicroSPECT/CT imaging and ex vivo biodistribution showed significantly lower tumor uptake of 111In-cixutumumab-PEG6-DM1-High compared to 111In-cixutumumab-PEG6-DM1-Low and 111In-cixutumumab. Cixutumumab-PEG6-DM1-Low significantly prolonged the survival of mice bearing MCF-7/Her18 xenograft compared with cixutumumab, cixutumumab-PEG6-DM1-High, or the PBS control group. Cixutumumab-PEG6-DM1-Low ADC was more effective. The study highlights the potential utility of cixutumumab-ADCs as theranostics against IGF-1R positive cancers.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Inmunoconjugados/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Receptor IGF Tipo 1/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Insulina/metabolismo , Células MCF-7 , Ratones Desnudos
4.
Mol Pharm ; 16(12): 4807-4816, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31518138

RESUMEN

Insulin growth factor receptor (IGF-1R) is overexpressed in many cancers of epithelial origin, where it confers enhanced proliferation and resistance to therapies targeted at other receptors. Anti-IGF-1R monoclonal antibodies have not demonstrated significant improvements in patient outcomes in clinical trials. Humanized monoclonal antibody cixutumumab (IMC-A12) binds to IGF-1R with low nM affinity. In this study, cixutumumab was conjugated with p-SCN-Bn-DOTA and radiolabeled with 111In or 225Ac for imaging or radiotherapy using a triple-negative breast cancer (TNBC) model SUM149PT. The antibody conjugate showed low nM affinity to IGF-1R, which was not affected by conjugation and radiolabeling procedures. Cixutumumab immunoconjugates were effectively internalized in SUM149PT and were cytotoxic to the cells with an EC50 of 225Ac-cixutumumab (0.02 nM) that was almost 5000-fold less than that of unlabeled cixutumumab (95.2 nM). MicroSPECT imaging of the SUM149PT xenograft showed the highest tumor uptake occurred at 48 h post injection and was 9.9 ± 0.5% injected activity per gram (%IA/cc). In radiotherapy studies, we evaluated the effect of the specific activity of 225Ac-cixutumumab on efficacy following a tail vein injection of two doses (days 0 and 10) of the investigation agent or controls. Cixutumumab (2.5 mg/kg) prolonged the survival of the SUM149PT tumor-bearing mice with a median survival of 87 days compared to the PBS control group (median survival of 62 days). Median survival of high specific activity 225Ac-cixutumumab (8 kBq/µg, 225 nCi, 0.05 mg/kg) was 103.5 days compared to 122 days for low specific activity 225Ac-cixutumumab (0.15 kBq/µg, 225 nCi, 2.5 mg/kg). Additionally, low specific activity radioimmunoconjugate led to complete tumor remission in 2/6 mice. The data suggest that the efficacy of cixutumumab can be enhanced by radiolabeling with 225Ac at a low specific activity.


Asunto(s)
Actinio/química , Anticuerpos Monoclonales Humanizados/química , Indio/química , Fármacos Sensibilizantes a Radiaciones/química , Receptor IGF Tipo 1/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/radioterapia , Animales , Biopolímeros/química , Femenino , Citometría de Flujo , Humanos , Células MCF-7 , Ratones , Radioinmunoterapia/métodos
5.
Theranostics ; 9(4): 974-985, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30867810

RESUMEN

Epidermal growth factor receptor (EGFR) is a transmembrane cell surface receptor that is frequently overexpressed and/or mutated in many cancers. Therapies targeting EGFR have poor outcomes due to the lack of reliable diagnostic tests to monitor EGFR. Current in vitro EGFR diagnostic methods are invasive, requiring biopsies, which limits tumor sampling and availability. EGFR molecular imaging provides non-invasive whole-body images capable of detecting primary tumors and metastases, which can be used to diagnose and monitor response to therapy. Methods: We evaluated properties of two anti-EGFR fragments, 8708 and 8709, as molecular-targeted imaging probes. 8708 and 8709 are anti-EGFR antigen binding fragments (Fabs) that recognize domain I/II of EGFR, which is distinct from epitopes recognized by current anti-EGFR therapeutic antibodies. We used complementarity determining region sequences from 8708 and 8709 Fabs to generate an anti-EGFR IgG and (scFv)2 and scFv-Fc antibody fragments. We expressed, purified, and labeled the IgG and fragments with IRDye800CW and used them to image EGFR-positive and -negative xenografts in CD-1 nude mice. 8709 scFv-Fc was also tested for competitive binding with the therapeutic anti-EGFR antibody nimotuzumab and for quantifying ratios of EGFR and EGFRvIII deletion mutant. Results: IRDye800CW-labeled 8708 (scFv)2 and 8709 scFv-Fc imaging probes showed high levels of accumulation and good retention in EGFR-positive xenografts, with peak accumulation occurring at 24 and 48 hours post injection, respectively. IRDye680RD-labeled 8709 scFv-Fc did not compete with IRDye800CW-labeled nimotuzumab for EGFR binding as assayed by flow cytometry using an EGFR-positive cell line. IRDye680RD-labeled 8709 scFv-Fc and IRDye800CW-labeled nimotuzumab used in combination were able to determine the ratio of cells expressing EGFR and a deletion mutant EGFRvIII. Conclusion: IRDye800CW-labeled 8708 (scFv)2 and 8709 scFv-Fc had desirable binding affinities, clearance times, and tumor accumulation to be used for imaging in combination with current EGFR targeted therapies. This study highlights the potential for using 8708 (scFv)2 and 8709 scFv-Fc as EGFR diagnostic and therapy monitoring tools.


Asunto(s)
Receptores ErbB/análisis , Colorantes Fluorescentes/metabolismo , Xenoinjertos/diagnóstico por imagen , Fragmentos de Inmunoglobulinas/metabolismo , Neoplasias/diagnóstico por imagen , Anticuerpos de Cadena Única/metabolismo , Animales , Ratones Desnudos , Trasplante de Neoplasias , Coloración y Etiquetado , Trasplante Heterólogo
6.
Oncotarget ; 10(10): 1031-1044, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30800216

RESUMEN

Nimotuzumab is a humanized anti-epidermal growth factor receptor I (EGFR) monoclonal antibody. We have developed antibody drug conjugates (ADCs) with nimotuzumab conjugated to PEGylated-maytansine (PEG6-DM1). We generated conjugates with low (nimotuzumab-PEG6-DM1-Low: DAR = 3.5) and high (nimotuzumab-PEG6-DM1-High: DAR = 7.3) drug to antibody ratios (DAR). Quality control was performed using UV spectrophotometry, size exclusion HPLC, bioanalyzer, biolayer interferometry (BLI), and flow cytometry in EGFR-positive DLD-1, MDA-MB-468 (high density EGFR), and HT-29 (very low EGFR density) cells. Control antibody drug conjugates were developed using a human anti-maltose binding protein (MBP) antibody. BLI showed that the binding of nimotuzumab-PEG6-DM1-Low and nimotuzumab-PEG6-DM1-High was slightly but significantly affected by conjugation of the drug (nimotuzumab KD 0.89 ± 0.02 nM < nimotuzumab-PEG6-DM1-Low KD 1.94 ± 0.02 nM < nimotuzumab-PEG6-DM1-High KD 3.75 ± 0.03 nM). In vitro cytotoxicity was determined following incubation of cells with the immunoconjugates and IC50 values were determined. Nimotuzumab-PEG6-DM1-Low and nimotuzumab-PEG6-DM1-High were used to treat EGFR positive KRAS mutant DLD-1 colorectal cancer xenograft. DLD-1 cells were transduced with a red fluorescent protein (iRFP702) to allow the use of near infrared imaging (NIR) for tumor response monitoring. In vitro potency correlated with the number of drugs on antibody, with nimotuzumab-PEG6-DM1-High showing higher activity than nimotuzumab-PEG6-DM1-Low. Three doses (15 mg/kg) of the ADCs prolonged the survival of DLD-1-iRFP-702 tumor bearing mice as monitored by NIR. Nimotuzumab-PEG6-DM1-Low resulted in 4/6 complete cure while nimotuzumab-PEG6-DM1-High resulted in 2/5 complete cure. The novel ADCs were very effective in a colorectal cancer model in vivo.

7.
J Nucl Med ; 60(8): 1103-1110, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30655327

RESUMEN

Epidermal growth factor receptor I (EGFR) is overexpressed in most cancers of epithelial origin. Antibody drug conjugates (ADCs) with PEGylated-maytansine (PEG-DM1) show promise in vitro and in vivo. However, in vivo biodistribution data for ADCs with PEG-DM1 have not been reported. Development of methods to understand the real-time in vivo behavior of these ADCs is needed to move these compounds to the clinic. Methods: Here we have used noninvasive small-animal SPECT/CT imaging and ex vivo biodistribution to understand the in vivo behavior of PEG6-DM1 ADCs. We developed nimotuzumab ADCs conjugated to PEG6-DM1. We generated immunoconjugates with low (nimotuzumab-PEG6-DM1-Low) and high (nimotuzumab-PEG6-DM1-High) drug-to-antibody ratios. The drug-to-antibody of nimotuzumab-PEG6-DM1-Low and nimotuzumab-PEG6-DM1-High was 3.5 and 7.3, respectively. Quality control was performed using ultraviolet spectrophotometry, size-exclusion high-performance liquid chromatography, bioanalyzer, biolayer interferometry, and flow cytometry in EGFR-positive DLD-1 cells. These immunoconjugates were conjugated with DOTA and radiolabeled with 111In. The in vitro binding and internalization rates of 111In-nimotuzumab, 111In-nimotuzumab-PEG6-DM1-Low, and 111In-nimotuzumab-PEG6-DM1-High were characterized. Furthermore, the pharmacokinetics, biodistribution, and imaging characteristics were evaluated in normal and DLD-1 tumor-bearing mice. Results: Flow cytometry and biolayer interferometry showed a trend toward decreasing EGFR affinity with increasing number of PEG6-DM1 on the antibody. Despite the lower overall cellular binding of the PEG6-DM1 radioimmunoconjugates, internalization was higher for PEG6-DM1 ADCs than for the non-PEGylated ADC in the following order: 111In-nimotuzumab-PEG6-DM1-High > 111In-nimotuzumab-PEG6-DM1-Low > 111In-nimotuzumab. Nuclear uptake of 111In-nimotuzumab-PEG6-DM1-High was 4.4-fold higher than 111In-nimotuzumab. Pharmacokinetics and biodistribution showed that 111In-nimotuzumab-PEG6-DM1-High had the slowest blood and whole-body clearance rate. Uptake in DLD-1 tumors of 111In-nimotuzumab was similar to 111In-nimotuzumab-PEG6-DM1-Low but was significantly higher than for 111In-nimotuzumab-PEG6-DM1-High. Tumor-to-background ratios for 111In-nimotuzumab and 111In-nimotuzumab-PEG6-DM1-Low were higher than for 111In-nimotuzumab-PEG6-DM1-High. Conclusion: The results show that conjugation of multiple PEG6-DM1 reduces the affinity for EGFR in vitro. However, the reduced affinity is counteracted by the high internalization rate of constructs with PEG6-DM1 ADCs in vitro. The decreased affinity resulted in low tumor uptake of 111In-nimotuzumab-PEG6-DM1-High, with a slow overall whole-body clearance rate. These data provide insights for evaluating the pharmacokinetics and normal -tissue toxicity and in determining dosing rate of PEGylated ADCs.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Inmunoconjugados , Radioisótopos de Indio , Maitansina/farmacología , Neoplasias/metabolismo , Animales , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Receptores ErbB/metabolismo , Citometría de Flujo , Células HT29 , Humanos , Interferometría , Cinética , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Polietilenglicoles/química , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Espectrofotometría Ultravioleta , Distribución Tisular , Trastuzumab/farmacología
8.
Eur J Med Chem ; 157: 437-446, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30103192

RESUMEN

Bifunctional chelators (BFCs) are covalently linked to biologically active targeting molecules and radiolabeled with radiometals. Technetium-99 m (99mTc) is the most widely used isotope in nuclear medicine because of its excellent physical properties. The objective of this study was to synthesize and characterize a novel BFC that allows for the labeling of antibodies and antibody fragments using the 99mTc(CO)3+ core which forms a very stable complex with 99mTc in the +1 oxidation sate. This study reports the synthesis of a BFC 1-pyrrolidinyl-2,5-dione-11-(bis((1-(carboxymethyl)-1H-imidazol-2-yl)methyl)amino)undecanoic acid (SAAC-CIM NHS ester), and the in vitro and in vivo evaluation of 99mTc(CO)3-SAAC-CIM-DLO6-(scFv)2 (99mTc(CO)3-DLO6-(scFv)2), a domain I/II-specific anti-epidermal growth factor receptor I (anti-EGFR) antibody fragment. The chelator allowed radiolabeling the (scFv)2 antibody fragment in very mild conditions with no significant decrease in binding to EGFR. Radiochemical yields of >50% (radiochemical purity > 95%) of the resulting anti-EGFR (scFv)2 immunoconjugate 99mTc(CO)3-DLO6-(scFv)2 was obtained. The radioimmunoconjugate was stable in histidine challenge experiments with less than 20% transchelation at 24 h after challenge in the presence of a 1500-fold excess of histidine. In vivo biodistribution of 99mTc(CO)3-DLO6-(scFv)2 indicates that the tracer was mainly cleared via renal excretion and to a lesser extent via the hepatobiliary pathway. The microSPECT imaging studies performed in mice confirmed the in vitro affinity results. The 99mTc(CO)3-DLO6-(scFv)2 shows some promising properties and warrants further investigation for imaging EGFR.


Asunto(s)
Anticuerpos/química , Anticuerpos/inmunología , Monóxido de Carbono/química , Receptores ErbB/análisis , Receptores ErbB/inmunología , Compuestos de Organotecnecio/química , Animales , Anticuerpos/análisis , Relación Dosis-Respuesta a Droga , Receptores ErbB/biosíntesis , Humanos , Ratones , Estructura Molecular , Neoplasias Experimentales/diagnóstico por imagen , Relación Estructura-Actividad , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Células Tumorales Cultivadas
9.
Oncotarget ; 9(24): 17117-17132, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29682209

RESUMEN

RATIONALE: Epidermal growth factor receptor (EGFR) upregulation is associated with enhanced proliferation and drug resistance in a number of cancers. Nimotuzumab is a humanized monoclonal antibody with high affinity for EGFR. The objective of this study was to determine if 89Zr-DFO-nimotuzumab could be suitable for human use as a PET probe for quantifying EGFR in vivo. METHODS: To evaluate the pharmacokinetics, biodistribution, microPET imaging, radiation dosimetry, and normal tissue toxicity in tumor and non-tumor bearing mice of 89Zr-desferoxamine-nimotuzumab (89Zr-DFO-nimotuzumab) of a product prepared under GMP conditions. Nimotuzumab was conjugated to DFO and radiolabeled with 89Zr. 89Zr-DFO-nimotuzumab was characterized by in vitro gel-electrophoresis, biolayer interferometry (BLI) and flow cytometry. 89Zr-DFO-nimotuzumab was evaluated in vivo by microPET and ex vivo by biodistribution in healthy and EGFR-positive tumor bearing mice. RESULTS: Flow cytometry with A431 cells showed no significant difference in the dissociation constant of nimotuzumab (13 ± 2 nM) compared with DFO-nimotuzumab (17 ± 4 nM). PET imaging in mice xenografts showed persistently high tumor uptake with the highest uptake obtained in DLD-1 xenograft (18.3 %IA/cc) at 168 hp.i. The projected human effective dose was low and was 0.184 mSv/MBq (0.679 rem/mCi) in females and 0.205 mSv/MBq (0.757 rem/mCi) in males. There was no apparent normal tissue toxicity as shown by cell blood counts and blood biochemistry analyses at 168-fold and 25-fold excess of the projected human radioactive and mass dose of the agent. CONCLUSION: 89Zr-DFO-nimotuzumab had low organ absorbed dose and effective dose that makes it suitable for potential human use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...