Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Drug Test Anal ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992930

RESUMEN

Due to the presumed lipolytic and anabolic properties, the misuse of human growth hormone (hGH) and its synthetic analogs in sports is prohibited both in- and out-of-competition. Within this research project, the detectability of somatrogon, a recombinant fusion glycoprotein of 22 kDa hGH and the C-terminal peptide (CTP) of the human chorionic gonadotropin (hCG) ß-subunit, with current WADA-approved doping control assays for hGH and hCG was investigated. For that purpose, cross-reactivity tests and a somatrogon administration study were conducted, and only "Kit 2" of the GH isoform differential immunoassays proved applicable to the detection of somatrogon administration in serum. In urine, the immunoassay specific for total hCG yielded presumptively positive findings for several post-administration samples, which can probably be attributed to the presence of an immunoreactive fragment of the hCG ß-subunit. As the detectability of somatrogon with these approaches was found to be limited, a highly specific detection assay (LOD: 10 ng/mL) for the drug in serum samples was developed by using affinity purification with GH receptor (GHR)-conjugated magnetic beads, proteolytic digestion, and liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). Following optimization, the approach was comprehensively characterized, and authentic post-administration serum samples were successfully analyzed as proof-of-concept, indicating a detection window of at least 96 h. Consequently, the presented method can be employed to confirm the presence of somatrogon in serum samples, where only "Kit 2" of the currently used immunoassay kits yielded an abnormally high Rec/Pit ratio.

2.
Drug Test Anal ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654556

RESUMEN

Hypoxen, a poly(dihydroxyphenylene) thiosulfonate-based drug, has been investigated concerning its effect on mitochondrial respiration and the utilization of lactate, especially in the context of strenuous exercise. Since 2023, patterns of use regarding hypoxen amongst the athletic population are monitored by the World Anti-Doping Agency (WADA) and its accredited anti-doping laboratories, necessitating information on suitable urinary markers indicative of the administration of hypoxen. In this exploratory study, urine samples collected post-administration of 1.5 and 2.0 g of hypoxen were analyzed by means of liquid chromatography-high resolution/high mass accuracy (tandem) mass spectrometry, which allowed for the identification of eight analytes that were plausibly attributable to metabolites of hypoxen. The identified species were assigned to the unconjugated species of S-(2,2',5,5'-tetrahydroxy-[1,1'-biphenyl]-3-yl) sulfurothioate and its glucuronide and additional tentatively identified analytes comprising a mercaptobenzene core structure. Including the identified markers into routine doping control analytical procedures enabled the detection of hypoxen use in athletes' doping control samples, thus contributing relevant information to WADA's monitoring program.

3.
Drug Test Anal ; 16(1): 5-29, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985429

RESUMEN

In this 16th edition of the annual banned-substance review on analytical approaches in human sports drug testing, literature on recent developments in this particular section of global anti-doping efforts that was published between October 2022 and September 2023 is summarized and discussed. Most recent additions to the continuously growing portfolio of doping control analytical approaches and investigations into analytical challenges in the context of adverse analytical findings are presented, taking into account existing as well as emerging challenges in anti-doping, with specific focus on substances and methods of doping recognized in the World Anti-Doping Agency's 2023 Prohibited List. As in previous years, focus is put particularly on new or enhanced analytical options in human doping controls, appreciating the exigence and core mission of anti-doping and, equally, the conflict arising from the opposingly trending extent of the athlete's exposome and the sensitivity of instruments nowadays commonly available in anti-doping laboratories.


Asunto(s)
Doping en los Deportes , Sustancias para Mejorar el Rendimiento , Deportes , Humanos , Doping en los Deportes/prevención & control , Detección de Abuso de Sustancias , Laboratorios
4.
Drug Test Anal ; 15(11-12): 1488-1502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37525530

RESUMEN

Higenamine is prohibited in sports as a ß2 -agonist by the World Anti-Doping Agency. As a key component of a great variety of plants, including the Annonaceae family, one aim of this research project was to evaluate whether the ingestion of Annona fruit could lead to higenamine adverse analytical findings. Single-dose administration studies including three Annona species (i.e., Annona muricata, Annona cherimola, and Annona squamosa) were conducted, leading to higenamine findings below the established minimum reporting level (MRL) of 10 ng/mL in urine. In consideration of cmax values (7.8 ng/mL) observed for higenamine up to 24 h, a multidose administration study was also conducted, indicating cumulative effects, which can increase the risk of exceeding the applicable MRL doping after Annona fruit ingestion. In this study, however, the MRL was not exceeded at any time point. Further, the major urinary excretion of higenamine in its sulfo-conjugated form was corroborated, its stability in urine was assessed, and in the absence of reference material, higenamine sulfo-conjugates were synthesized and comprehensively characterized, suggesting the predominant presence of higenamine 7-sulfate. In addition, the option to include complementary biomarkers of diet-related higenamine intake into routine doping controls was investigated. A characteristic urinary pattern attributed to isococlaurine, reticuline, and a yet not fully characterized bismethylated higenamine glucuronide was observed after Annona ingestion but not after supplement use, providing a promising dataset of urinary biomarkers, which supports the discrimination between different sources of urinary higenamine detected in sports drug testing programs.


Asunto(s)
Annona , Frutas , Detección de Abuso de Sustancias , Biomarcadores
5.
Drug Test Anal ; 15(1): 5-26, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36369629

RESUMEN

Also in 2021/2022, considerable efforts were invested into advancing human sports drug testing programs, recognizing and taking into account existing as well as emerging challenges in anti-doping, especially with regard to substances and methods of doping specified in the World Anti-Doping Agency's 2022 Prohibited List. In this edition of the annual banned-substance review, literature on recent developments published between October 2021 and September 2022 is summarized and discussed. Focus is put particularly on enhanced analytical approaches and complementary testing options in human doping controls, appreciating the exigence and mission in anti-doping and, equally, the contemporary "new normal" considering, for example, the athlete's exposome versus analytical sensitivity and applicable anti-doping regulations for result interpretation and management.


Asunto(s)
Doping en los Deportes , Sustancias para Mejorar el Rendimiento , Deportes , Humanos , Detección de Abuso de Sustancias
6.
Anal Bioanal Chem ; 415(4): 669-681, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36441233

RESUMEN

Potential scenarios as to the origin of minute amounts of banned substances detected in doping control samples have been a much-discussed problem in anti-doping analysis in recent years. One such debated scenario has been the contamination of female athletes' urine with ejaculate containing doping agents and/or their metabolites. The aim of this work was to obtain complementary information on whether relevant concentration ranges of doping substances are excreted into the ejaculate and which metabolites can be detected in the seminal fluid (sf) and corresponding blood plasma (bp) samples. A method was established to study the concentration and metabolite profiles of stanozolol and LGD-4033-substances listed under anabolic substances (S1) on the World Anti-Doping Agency's Prohibited List-in bp and sf using liquid chromatography high-resolution mass spectrometry (LC-HRMS). For sf and bp, methods for detecting minute amounts of these substances were developed and tested for specificity, recovery, linearity, precision, and reliability. Subsequently, sf and bp samples from an animal administration study, where a boar orally received stanozolol at 0.33 mg/kg and LGD-4033 at 0.11 mg/kg, were measured. The developed assays proved appropriate for the detection of the target substances in both matrices with detection limits between 10 and 40 pg/mL for the unmetabolized drugs in sf and bp, allowing to estimate the concentration of stanozolol in bp (0.02-0.40 ng/mL) and in sf (0.01-0.25 ng/mL) as well as of LGD-4033 in bp (0.21-2.00 ng/mL) and in sf (0.03-0.68 ng/mL) post-administration. In addition, metabolites resulting from different metabolic pathways were identified in sf and bp, with sf resembling a composite of the metabolic profile of bp and urine.


Asunto(s)
Anabolizantes , Doping en los Deportes , Masculino , Animales , Femenino , Porcinos , Estanozolol/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Detección de Abuso de Sustancias/métodos , Cromatografía Liquida/métodos , Plasma/química
7.
Artículo en Inglés | MEDLINE | ID: mdl-36539355

RESUMEN

Test methods in anti-doping, most of which rely on the most modern mass spectrometric instrumentation, undergo continuous optimization in order to accommodate growing demands as to comprehensiveness, sensitivity, retrospectivity, cost-effectiveness, turnaround times, etc. While developing and improving analytical approaches is vital for appropriate sports drug testing programs, the combination of today's excellent analytical potential and the inevitable exposure of humans to complex environmental factors, specifically chemicals and drugs at the lowest levels, has necessitated dedicated research, particularly into the elite athlete's exposome. Being subjected to routine doping controls, athletes frequently undergo blood and/or urine tests for a plethora of drugs, chemicals, corresponding metabolic products, and various biomarkers. Due to the applicable anti-doping regulations, the presence of prohibited substances in an athlete's organism can constitute an anti-doping rule violation with severe consequences for the individual's career (in contrast to the general population), and frequently the question of whether the analytical data can assist in differentiating scenarios of 'doping' from 'contamination through inadvertent exposure' is raised. Hence, investigations into the athlete's exposome and how to distinguish between deliberate drug use and potential exposure scenarios have become a central topic of anti-doping research, aiming at supporting and consolidating the balance between essential analytical performance characteristics of doping control test methods and the mandate of protecting the clean athlete by exploiting new strategies in sampling and analyzing specimens for sports drug-testing purposes.

8.
Drug Test Anal ; 14(1): 7-30, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34788500

RESUMEN

Most core areas of anti-doping research exploit and rely on analytical chemistry, applied to studies aiming at further improving the test methods' analytical sensitivity, the assays' comprehensiveness, the interpretation of metabolic profiles and patterns, but also at facilitating the differentiation of natural/endogenous substances from structurally identical but synthetically derived compounds and comprehending the athlete's exposome. Further, a continuously growing number of advantages of complementary matrices such as dried blood spots have been identified and transferred from research to sports drug testing routine applications, with an overall gain of valuable additions to the anti-doping field. In this edition of the annual banned-substance review, literature on recent developments in anti-doping published between October 2020 and September 2021 is summarized and discussed, particularly focusing on human doping controls and potential applications of new testing strategies to substances and methods of doping specified in the World Anti-Doping Agency's 2021 Prohibited List.


Asunto(s)
Doping en los Deportes/prevención & control , Sustancias para Mejorar el Rendimiento/análisis , Detección de Abuso de Sustancias/métodos , Animales , Pruebas con Sangre Seca/métodos , Exposoma , Humanos
9.
Anal Sci Adv ; 3(1-2): 21-28, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38716057

RESUMEN

Rationale: An increasing number of adverse analytical findings (AAFs) in routine doping controls has been suspected and debated to presumably result from intimate contact with bodily fluids (including ejaculate), potentially facilitating the transfer of prohibited substances. More precisely, the possibility of prohibited drugs being present in ejaculate and introduced by sexual intercourse into the vagina of an athlete and, subsequently, into doping control urine samples, was discussed. Methods: Two testing strategies to determine trace amounts of semenogelin I, a major and specific constituent of semen, were assessed as to their applicability to urine samples. First, the testing protocol of a lateral flow immunochromatographic test directed against semenogelin was adapted. Second, a liquid chromatography/tandem mass spectrometry (LC-MS/MS)-based method was established, employing solid-phase extraction of urine, trypsinization of the retained protein content, and subsequent detection of semenogelin I-specific peptides. Sensitivity, specificity, and reproducibility, but also recovery, linearity, precision, and identification capability of the approaches were assessed. Both assays were used to determine the analyte stability in urine (at 3 µL/mL) at room temperature, +4°C, and -20°C, and authentic urine samples collected either after (self-reported) celibacy or sexual intercourse were subjected to the established assays for proof-of-concept. Results: No signals for semenogelin were observed in either assay when analyzing blank urine specimens, demonstrating the methods' specificity. Limits of detection were estimated with 1 µL and 10 nL of ejaculate per mL of urine for the immunochromatographic and the mass spectrometric approach, respectively, and figures of merit for the latter assay further included intra- and interday imprecision (4.5-10.7% and 3.8-21.6%), recovery (44%), and linearity within the working range of 0-100 nL/mL. Spiked urine tested positive for semenogelin under all storage conditions up to 12 weeks, and specimens collected after sexual intercourse were found to contain trace amounts of semenogelin up to 55-72 h.

10.
Drug Test Anal ; 13(11-12): 1814-1821, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34694748

RESUMEN

Similar to the general population, elite athletes are exposed to a complex set of environmental factors including chemicals and radiation and also biological and physical stressors, which constitute an exposome that is, unlike for the general population, subjected to specific scrutiny for athletes due to applicable antidoping regulations and associated (frequent) routine doping controls. Hence, investigations into the athlete's exposome and how to distinguish between deliberate drug use and different contamination scenarios has become a central topic of antidoping research, as a delicate balance is to be managed between the vital and continually evolving developments of sensitive analytical techniques on the one hand, and the risk of the athletes' exposome potentially causing adverse analytical findings on the other.


Asunto(s)
Doping en los Deportes/prevención & control , Exposoma , Detección de Abuso de Sustancias/métodos , Atletas , Contaminación de Medicamentos/prevención & control , Humanos , Deportes
11.
Drug Test Anal ; 13(11-12): 1835-1851, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34648228

RESUMEN

The testing strategy for the detection of testosterone (T) or T-prohormones is based on the longitudinal evaluation of urinary steroid concentrations accompanied by subsequent isotope ratio mass spectrometry (IRMS)-based confirmation of samples showing atypical concentrations or concentration ratios. In recent years, the IRMS methodology focussed more and more on T itself and on the metabolites of T, 5α- and 5ß-androstanediol. These target analytes showed the best sensitivity and retrospectivity, but their use has occasionally been challenging due to their comparably low urinary concentrations. Conversely, the carbon isotope ratios (CIR) of the main urinary metabolites of T, androsterone (A) and etiocholanolone (EITO), can readily be measured even from low urine volumes; those however, commonly offer a lower sensitivity and shorter retrospectivity in uncovering T misuse. Within this study, the CIRs of A and ETIO were combined with their urinary concentrations, resulting in a single parameter referred to as 'difference from weighted mean' (DWM). Both glucuronidated and sulfated steroids were investigated, encompassing a reference population (n = 110), longitudinal studies on three individuals, influence of ethanol in two individuals, and re-analysis of several administration studies including T, dihydrotestosterone, androstenedione, epiandrosterone, dehydroepiandrosterone, and T-gel. Especially DWM calculated for the sulfoconjugated steroids significantly prolonged the detection time of steroid hormone administrations when individual reference ranges were applied. Administration studies employing T encompassing CIR common for Europe (-23.8‰ and -24.4‰) were investigated and, even though for a significantly shorter time period and less pronounced, DWM could demonstrate the exogenous source of T metabolites.


Asunto(s)
Androsterona/análisis , Etiocolanolona/análisis , Congéneres de la Testosterona/análisis , Testosterona/análisis , Androsterona/orina , Isótopos de Carbono , Doping en los Deportes/prevención & control , Etanol/administración & dosificación , Etanol/farmacología , Etiocolanolona/orina , Femenino , Humanos , Estudios Longitudinales , Masculino , Espectrometría de Masas/métodos , Persona de Mediana Edad , Detección de Abuso de Sustancias/métodos , Testosterona/orina , Congéneres de la Testosterona/orina
13.
Drug Test Anal ; 13(11-12): 1915-1920, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34378339

RESUMEN

Little information on the human metabolism and urinary elimination of hydrafinil (9-fluorenol) exists. In order to support preventive anti-doping activities concerning compounds such as hydrafinil, a pilot elimination study was conducted with three healthy male volunteers receiving a single oral dose of 50 mg of hydrafinil. Urine samples were collected prior to and up to 72-h post-administration and were subjected to both gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry, which allowed for the identification of the intact drug as well as Phase I and Phase II metabolites, primarily hydroxylated and/or glucuronidated or sulfo-conjugated hydrafinil. The identity of these metabolites was corroborated by high-resolution/high-accuracy tandem mass spectrometry, and the applicability of routine doping control workflows for the detection of hydrafinil and its main metabolites was assessed. Therefore, two findings of hydrafinil and its metabolites were recorded, which concerned out-of-competition doping control samples and, hence, were not pursued with confirmatory analyses. Yet, the initial testing procedure results indicate that hydrafinil might require consideration in sports drug testing programs to ensure its detection, if classified as prohibited by the World Anti-Doping Agency (WADA).


Asunto(s)
Doping en los Deportes/prevención & control , Espectrometría de Masas/métodos , Detección de Abuso de Sustancias/métodos , Cromatografía Liquida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Masculino
14.
Rapid Commun Mass Spectrom ; 35(21): e9183, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34431558

RESUMEN

RATIONALE: Chlorphenesin is an approved biocide frequently used in cosmetics, and its carbamate ester is an approved skeletal muscle relaxant in certain countries for the treatment of discomfort related to skeletal muscle trauma and inflammation. A major urinary metabolite is 4-chlorophenoxy acetic acid (4-CPA), also known as para-chlorophenoxyacetate, which is also employed as a target analyte in sports drug testing to detect the use of the prohibited nootropic stimulant meclofenoxate. To distinguish between 4-CPA resulting from chlorphenesin, chlorphenesin carbamate, and meclofenoxate, urinary metabolite profiles of chlorphenesin after legitimate use were investigated. METHODS: Human administration studies with commercially available sunscreen containing 0.25% by weight of chlorphenesin were conducted. Six study participants dermally applied 8 g of sunscreen and collected urine samples before and up to 7 days after application. Another set of six study participants applied 8 g of sunscreen on three consecutive days, and urine samples were also taken for up to 5 days after the last dosing. Urine specimens were analyzed using liquid chromatography-high resolution (tandem) mass spectrometry, and urinary metabolites were identified in accordance with literature data by accurate mass analysis of respective precursor and characteristic product ions. RESULTS: In accordance with literature data, chlorphenesin yielded the characteristic urinary metabolites, chlorphenesin glucuronide, chlorphenesin sulfate, and 3-(4-chlorophenoxy)-2-hydroxypropanoic acid (4-CPP), as well as the common metabolite 4-CPA. 4-CPA and 4-CPP were observed at similar abundances, with urinary concentrations of 4-CPA reaching up to ~1500 and 2300 ng/mL after single and multiple sunscreen applications, respectively. CONCLUSION: 4-CPA is a common metabolite of meclofenoxate, chlorphenesin, and chlorphenesin carbamate. Monitoring the diagnostic urinary metabolites of chlorphenesin provides conclusive supporting evidence of whether chlorphenesin or the prohibited nootropic meclofenoxate was administered.


Asunto(s)
Clorfenesina , Cromatografía Líquida de Alta Presión/métodos , Protectores Solares , Espectrometría de Masas en Tándem/métodos , Clorfenesina/química , Clorfenesina/metabolismo , Clorfenesina/orina , Femenino , Humanos , Límite de Detección , Masculino , Reproducibilidad de los Resultados , Protectores Solares/análisis , Protectores Solares/química , Protectores Solares/metabolismo
15.
Anal Bioanal Chem ; 413(22): 5655-5667, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34142201

RESUMEN

In order to detect the misuse of testosterone (T), urinary steroid concentrations and concentration ratios are quantified and monitored in a longitudinal manner to enable the identification of samples exhibiting atypical test results. These suspicious samples are then forwarded to isotope ratio mass spectrometry (IRMS)-based methods for confirmation. Especially concentration ratios like T over epitestosterone (E) or 5α-androstanediol over E proved to be valuable markers. Unfortunately, depending on the UGT2B17 genotype and/or the gender of the athlete, these markers may fail to provide evidence for T administrations when focusing exclusively on urine samples. In recent years, the potential of plasma steroids has been investigated and were found to be suitable to detect T administrations especially in female volunteers. A current drawback of this approach is the missing possibility to confirm that elevated steroid concentrations are solely derived from an administration of T and cannot be attributed to confounding factors. Therefore, an IRMS method for plasma steroids was developed and validated taking into account the comparably limited sample volume. As endogenous reference compounds, unconjugated cholesterol and dehydroepiandrosterone sulfate were found suitable, while androsterone and epiandrosterone (both sulfo-conjugated) were chosen as target analytes. The developed method is based on multi-dimensional gas chromatography coupled to IRMS in order to optimize the overall assay sensitivity. The approach was validated, and a reference population encompassing n = 65 males and females was investigated to calculate population-based thresholds. As proof-of-concept, samples from volunteers receiving T replacement therapies and excretion study samples were investigated.


Asunto(s)
Isótopos de Carbono/análisis , Congéneres de la Testosterona/sangre , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Terapia de Reemplazo de Hormonas , Humanos , Límite de Detección , Masculino , Prueba de Estudio Conceptual , Valores de Referencia , Testosterona/administración & dosificación , Congéneres de la Testosterona/normas
16.
Int J Sports Med ; 42(10): 863-878, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34049412

RESUMEN

For decades, the class of anabolic androgenic steroids has represented the most frequently detected doping agents in athletes' urine samples. Roughly 50% of all adverse analytical findings per year can be attributed to anabolic androgenic steroids, of which about 2/3 are synthetic exogenous steroids, where a qualitative analytical approach is sufficient for routine doping controls. For the remaining 1/3 of findings, caused by endogenous steroid-derived analytical test results, a more sophisticated quantitative approach is required, as their sheer presence in urine cannot be directly linked to an illicit administration. Here, the determination of urinary concentrations and concentration ratios proved to be a suitable tool to identify abnormal steroid profiles. Due to the large inter-individual variability of both concentrations and ratios, population-based thresholds demonstrated to be of limited practicability, leading to the introduction of the steroidal module of the Athlete Biological Passport. The passport enabled the generation of athlete-specific individual reference ranges for steroid profile parameters. Besides an increase in sensitivity, several other aspects like sample substitution or numerous confounding factors affecting the steroid profile are addressed by the Athlete Biological Passport-based approach. This narrative review provides a comprehensive overview on current prospects, supporting professionals in sports drug testing and steroid physiology.


Asunto(s)
Doping en los Deportes/prevención & control , Esteroides/análisis , Detección de Abuso de Sustancias , Atletas , Factores de Confusión Epidemiológicos , Humanos , Valores de Referencia
17.
Drug Test Anal ; 13(3): 505-509, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33538088

RESUMEN

Capillary blood sampled as dried blood spot (DBS) has shown substantial potential as test matrix in sports drug testing in various different settings, enabling the analysis of numerous different drugs and/or their respective metabolites. In addition to established beneficial aspects of DBS specimens in general (such as the minimally invasive and non-intrusive nature, and simplified sample transport), a yet unexplored advantage of DBS in the anti-doping context could be the opportunity of preserving a source of information complementary to routine doping controls performed in urine or venous blood. Whenever follow-up investigations are warranted or required, frequently collected and stored (but yet not analyzed) DBS samples could be target-tested for the compound(s) in question, in order to contribute to results management and decision-making processes.


Asunto(s)
Doping en los Deportes/prevención & control , Pruebas con Sangre Seca/métodos , Detección de Abuso de Sustancias/métodos , Capilares , Humanos , Manejo de Especímenes/métodos
18.
Drug Test Anal ; 13(1): 8-35, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33185038

RESUMEN

Analytical chemistry-based research in sports drug testing has been a dynamic endeavor for several decades, with technology-driven innovations continuously contributing to significant improvements in various regards including analytical sensitivity, comprehensiveness of target analytes, differentiation of natural/endogenous substances from structurally identical but synthetically derived compounds, assessment of alternative matrices for doping control purposes, and so forth. The resulting breadth of tools being investigated and developed by anti-doping researchers has allowed to substantially improve anti-doping programs and data interpretation in general. Additionally, these outcomes have been an extremely valuable pledge for routine doping controls during the unprecedented global health crisis that severely affected established sports drug testing strategies. In this edition of the annual banned-substance review, literature on recent developments in anti-doping published between October 2019 and September 2020 is summarized and discussed, particularly focusing on human doping controls and potential applications of new testing strategies to substances and methods of doping specified the World Anti-Doping Agency's 2020 Prohibited List.


Asunto(s)
Drogas Ilícitas , Sustancias para Mejorar el Rendimiento , Detección de Abuso de Sustancias , Anabolizantes/análisis , Diuréticos/análisis , Doping en los Deportes , Hormonas/análisis , Humanos , Drogas Ilícitas/análisis , Péptidos y Proteínas de Señalización Intercelular/análisis , Sustancias para Mejorar el Rendimiento/análisis , Detección de Abuso de Sustancias/métodos
19.
Br J Sports Med ; 55(8): 416, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33097528

RESUMEN

Football is a global game which is constantly evolving, showing substantial increases in physical and technical demands. Nutrition plays a valuable integrated role in optimising performance of elite players during training and match-play, and maintaining their overall health throughout the season. An evidence-based approach to nutrition emphasising, a 'food first' philosophy (ie, food over supplements), is fundamental to ensure effective player support. This requires relevant scientific evidence to be applied according to the constraints of what is practical and feasible in the football setting. The science underpinning sports nutrition is evolving fast, and practitioners must be alert to new developments. In response to these developments, the Union of European Football Associations (UEFA) has gathered experts in applied sports nutrition research as well as practitioners working with elite football clubs and national associations/federations to issue an expert statement on a range of topics relevant to elite football nutrition: (1) match day nutrition, (2) training day nutrition, (3) body composition, (4) stressful environments and travel, (5) cultural diversity and dietary considerations, (6) dietary supplements, (7) rehabilitation, (8) referees and (9) junior high-level players. The expert group provide a narrative synthesis of the scientific background relating to these topics based on their knowledge and experience of the scientific research literature, as well as practical experience of applying knowledge within an elite sports setting. Our intention is to provide readers with content to help drive their own practical recommendations. In addition, to provide guidance to applied researchers where to focus future efforts.


Asunto(s)
Rendimiento Atlético/fisiología , Dieta Saludable , Política Nutricional , Fútbol/fisiología , Traumatismos en Atletas/rehabilitación , Composición Corporal , Conducta Competitiva/fisiología , Diversidad Cultural , Suplementos Dietéticos , Ambiente , Femenino , Humanos , Masculino , Necesidades Nutricionales , Acondicionamiento Físico Humano/fisiología , Viaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...