Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38000715

RESUMEN

Classical serotonergic psychedelics such as lysergic acid diethylamide or the naturally occurring compounds psilocybin and mescaline produce profound changes in mood, thought, intuition, sensory perception, the experience of time and space, and even the experience of self. Research examining psychedelic compounds has had a complex and turbulent evolution. Many cultures throughout the world have used psychedelic plants not only for mystical, ritualistic, or divinatory purposes but also for curing illnesses. Much of the genesis and progress of modern investigations into the effects and underlying mechanisms of action of psychedelics have been intertwined with studies of the neurotransmitter serotonin. Early hypotheses that serotonergic systems mediate psychedelic effects were supported initially by preclinical animal studies and subsequently confirmed by pharmacological studies in healthy humans. The use of psychedelic compounds as putative psychotomimetics that reproduce some features of naturally occurring psychotic disorders met with some limited success. More recent studies are exploring psychedelics as potential psychotherapeutic agents. Recent indications that even 1 or 2 psychedelic treatments produce robust and sustained reductions in clinical symptoms in a variety of psychiatric disorders have prompted an enormous resurgence of interest in the nature and mechanisms contributing to their effects.

2.
Pharmacol Biochem Behav ; 222: 173499, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462584

RESUMEN

Although antiretroviral therapy (ART) has increased the quality of life and lifespan in people living with HIV (PWH), millions continue to suffer from the neurobehavioral effects of the virus. Additionally, the abuse of illicit drugs (methamphetamine in particular) is significantly higher in PWH compared to the general population, which may further impact their neurological functions. The HIV regulatory protein, Tat, has been implicated in the neurobehavioral impacts of HIV and is purported to inhibit dopamine transporter (DAT) function in a way similar to methamphetamine. Thus, we hypothesized that a combination of Tat expression and methamphetamine would exert synergistic deleterious effects on behavior and DAT expression. We examined the impact of chronic methamphetamine exposure on exploration in transgenic mice expressing human Tat (iTat) vs. their wildtype littermates using the behavioral pattern monitor (BPM). During baseline, mice exhibited sex-dependent differences in BPM behavior, which persisted through methamphetamine exposure, and Tat activation with doxycycline. We observed a main effect of methamphetamine, wherein exposure, irrespective of genotype, increased locomotor activity and decreased specific exploration. After doxycycline treatment, mice continued to exhibit drug-dependent alterations in locomotion, with no effect of Tat, or methamphetamine interactions. DAT levels were higher in wildtype, saline-exposed males compared to all other groups. These data support stimulant-induced changes of locomotor activity and exploration, and suggest that viral Tat and methamphetamine do not synergistically interact to alter these behaviors in mice. These findings are important for future studies attempting to disentangle the effect of substances that impact DAT on HAND-relevant behaviors using such transgenic animals.


Asunto(s)
Infecciones por VIH , Metanfetamina , Masculino , Ratones , Humanos , Animales , Ratones Transgénicos , Metanfetamina/farmacología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología , Calidad de Vida , Doxiciclina/farmacología , Locomoción
3.
Cereb Cortex ; 33(10): 5783-5796, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36472411

RESUMEN

The balance between exploration and exploitation is essential for decision-making. The present study investigated the role of ventromedial orbitofrontal cortex (vmOFC) glutamate neurons in mediating value-based decision-making by first using optogenetics to manipulate vmOFC glutamate activity in rats during a probabilistic reversal learning (PRL) task. Rats that received vmOFC activation during informative feedback completed fewer reversals and exhibited reduced reward sensitivity relative to rats. Analysis with a Q-learning computational model revealed that increased vmOFC activity did not affect the learning rate but instead promoted maladaptive exploration. By contrast, vmOFC inhibition increased the number of completed reversals and increased exploitative behavior. In a separate group of animals, calcium activity of vmOFC glutamate neurons was recorded using fiber photometry. Complementing our results above, we found that suppression of vmOFC activity during the latter part of rewarded trials was associated with improved PRL performance, greater win-stay responding and selecting the correct choice on the next trial. These data demonstrate that excessive vmOFC activity during reward feedback disrupted value-based decision-making by increasing the maladaptive exploration of lower-valued options. Our findings support the premise that pharmacological interventions that normalize aberrant vmOFC glutamate activity during reward feedback processing may attenuate deficits in value-based decision-making.


Asunto(s)
Corteza Prefrontal , Recompensa , Ratas , Animales , Corteza Prefrontal/fisiología , Aprendizaje Inverso/fisiología , Glutamatos , Toma de Decisiones/fisiología
4.
Behav Brain Res ; 437: 114109, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36108778

RESUMEN

Human immunodeficiency virus (HIV) continues to infect millions worldwide, negatively impacting neurobehavioral function. Further understanding of the combined effects of HIV and methamphetamine use is crucial, as methamphetamine use is prevalent in people with HIV. The HIV-associated protein Tat may contribute to cognitive dysfunction, modeled preclinically in mice using doxycycline (DOX)-inducible Tat expression (iTat). Tat may exert its effects on cognitive function via disruption of the dopamine transporter, similar to the action of methamphetamine. Additionally, Tat and methamphetamine both decrease interneuron populations, including those expressing calbindin. It is important to understand the combined effects of Tat and methamphetamine in preclinical models of HIV infection. Here, we used iTat transgenic mice and a chronic binge regimen of methamphetamine exposure to determine their combined impact on reward learning and motivation. We also measured calbindin expression in behavior-relevant brain regions. Before induction with DOX, iTat mice exhibited no differences in behavior. Chronic methamphetamine exposure before Tat induction impaired initial reward learning but did not affect motivation. Furthermore, DOX-induced Tat expression did not alter behavior, but slowed latencies to retrieve rewards. This effect of Tat, however, was not observed in methamphetamine-treated mice, indicative of a potential protective effect. Finally, Tat expression was associated with an increase in calbindin-expressing cells in the VTA, while methamphetamine exposure did not alter calbindin numbers. These findings may indicate a protective role of methamphetamine in HIV neuropathology, which in turn may help in our understanding of why people with HIV use methamphetamine at disproportionately higher rates.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Infecciones por VIH , Metanfetamina , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Animales , Humanos , Ratones , Calbindinas/metabolismo , Modelos Animales de Enfermedad , Infecciones por VIH/complicaciones , Infecciones por VIH/psicología , Metanfetamina/efectos adversos , Metanfetamina/farmacología , Ratones Transgénicos , Recompensa , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Trastornos Relacionados con Anfetaminas/complicaciones , Trastornos Relacionados con Anfetaminas/metabolismo
5.
Neuropsychopharmacology ; 47(13): 2238-2244, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36192631

RESUMEN

Little is understood about cognitive mechanisms that confer risk and resiliency for posttraumatic stress disorder (PTSD). Prepulse Inhibition (PPI) is a measure of pre-attentional response inhibition that is a stable cognitive trait disrupted in many neuropsychiatric disorders characterized by poor behavioral or cognitive inhibition, including PTSD. Differentiating between PTSD-related phenotypes that are pre-existing factors vs. those that emerge specifically after trauma is critical to understanding PTSD etiology and can only be addressed by prospective studies. This study tested the hypothesis that sensorimotor gating performance is associated with risk/resiliency for combat-related PTSD. As part of a prospective, longitudinal study, 1226 active duty Marines and Navy Corpsman completed a PPI test as well as a clinical interview to assess PTSD symptoms both before,  and 3 and 6 months after a combat deployment. Participants that developed PTSD 6 months following deployment (N=46)  showed lower PPI across pre and post-deployment time points compared to participants who did not develop PTSD (N=1182) . Examination of the distribution of PTSD across PPI performance revealed a lower than expected number of cases in the highest performing quartile compared to the rest of the distribution (p < 0.04). When controlling for other factors that predict PTSD in this population, those in the top 25% of PPI performance showed a >50% reduction in chance to develop PTSD (OR = 0.32). Baseline startle reactivity and startle habituation were not significantly different between PTSD risk and control groups. These findings suggest that robust sensorimotor gating may represent a resiliency factor for development of PTSD following trauma.


Asunto(s)
Personal Militar , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/psicología , Estudios Prospectivos , Estudios Longitudinales , Personal Militar/psicología , Filtrado Sensorial , Reflejo de Sobresalto/fisiología
6.
Int J Neuropsychopharmacol ; 24(11): 894-906, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34338765

RESUMEN

BACKGROUND: HIV-associated neurocognitive disorder (HAND) is commonly observed in persons living with HIV (PWH) and is characterized by cognitive deficits implicating disruptions of fronto-striatal neurocircuitry. Such circuitry is also susceptible to alteration by cannabis and other drugs of abuse. PWH use cannabis at much higher rates than the general population, thus prioritizing the characterization of any interactions between HIV and cannabinoids on cognitively relevant systems. Prepulse inhibition (PPI) of the startle response, the process by which the motor response to a startling stimulus is attenuated by perception of a preceding non-startling stimulus, is an operational assay of fronto-striatal circuit integrity that is translatable across species. PPI is reduced in PWH. The HIV transgenic (HIVtg) rat model of HIV infection mimics numerous aspects of HAND, although to date the PPI deficit observed in PWH has yet to be fully recreated in animals. METHODS: PPI was measured in male and female HIVtg rats and wild-type controls following acute, nonconcurrent treatment with the primary constituents of cannabis: Δ 9-tetrahydrocannabinol (THC; 1 and 3 mg/kg, s.c.) and cannabidiol (1, 10, and 30 mg/kg, i.p.). RESULTS: HIVtg rats exhibited a significant PPI deficit relative to wild-type controls. THC reduced PPI in controls but not HIVtg rats. Cannabidiol exerted only minor, genotype-independent effects on PPI. CONCLUSIONS: HIVtg rats exhibit a relative insensitivity to the deleterious effects of THC on the fronto-striatal function reflected by PPI, which may partially explain the higher rates of cannabis use among PWH.


Asunto(s)
Cannabinoides/farmacología , Infecciones por VIH/fisiopatología , Filtrado Sensorial/efectos de los fármacos , Estimulación Acústica , Animales , Cannabidiol/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Femenino , Alucinógenos/farmacología , Masculino , Inhibición Prepulso/efectos de los fármacos , Ratas , Ratas Transgénicas , Reflejo de Sobresalto/efectos de los fármacos
7.
Mol Psychiatry ; 26(11): 6578-6588, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33859357

RESUMEN

Autism spectrum disorder (ASD) is often signaled by atypical cries during infancy. Copy number variants (CNVs) provide genetically identifiable cases of ASD, but how early atypical cries predict a later onset of ASD among CNV carriers is not understood in humans. Genetic mouse models of CNVs have provided a reliable tool to experimentally isolate the impact of CNVs and identify early predictors for later abnormalities in behaviors relevant to ASD. However, many technical issues have confounded the phenotypic characterization of such mouse models, including systematically biased genetic backgrounds and weak or absent behavioral phenotypes. To address these issues, we developed a coisogenic mouse model of human proximal 16p11.2 hemizygous deletion and applied computational approaches to identify hidden variables within neonatal vocalizations that have predictive power for postpubertal dimensions relevant to ASD. After variables of neonatal vocalizations were selected by least absolute shrinkage and selection operator (Lasso), random forest, and Markov model, regression models were constructed to predict postpubertal dimensions relevant to ASD. While the average scores of many standard behavioral assays designed to model dimensions did not differentiate a model of 16p11.2 hemizygous deletion and wild-type littermates, specific call types and call sequences of neonatal vocalizations predicted individual variability of postpubertal reciprocal social interaction and olfactory responses to a social cue in a genotype-specific manner. Deep-phenotyping and computational analyses identified hidden variables within neonatal social communication that are predictive of postpubertal behaviors.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/genética , Deleción Cromosómica , Variaciones en el Número de Copia de ADN/genética , Modelos Animales de Enfermedad , Ratones , Conducta Social
8.
Psychiatry Res ; 297: 113695, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33545431

RESUMEN

Bipolar disorder (BD) and cannabis use are highly comorbid and are each associated with cognitive impairment.  Given the prevalence of cannabis use in people with BD, it is important to understand whether the two interact to impact cognitive function. We performed a systematic scoping review to determine what is currently known in this field. We systematically searched PubMed, Embase, CINAHL, Web of Science, and PsycINFO for studies on the relationship between cannabis use and cognition in people with BD or relevant animal models. Six observational human studies and no animal studies met inclusion criteria. Two studies found cannabis use in BD was associated with better performance in some cognitive domains, while three studies found no association. One study found cannabis use in BD was associated with worse overall cognition. Overall, most identified studies suggest cannabis use is not associated with significant cognitive impairment in BD; however, the scope of knowledge in this field is limited, and more systematic studies are clearly required. Future studies should focus on longitudinal and experimental trials, and well-controlled observational studies with rigorous quantification of the onset, frequency, quantity, duration, and type of cannabis use, as well as BD illness features.


Asunto(s)
Trastorno Bipolar/psicología , Trastornos del Conocimiento/psicología , Cognición/fisiología , Uso de la Marihuana/psicología , Humanos
9.
Behav Brain Res ; 405: 113167, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577882

RESUMEN

BACKGROUND: Bipolar disorder is a life-threatening disorder linked to dopamine transporter (DAT) polymorphisms, with reduced DAT levels seen in positron emission tomography and postmortem brains. AIMS: The purpose of this study was to examine the effects of approved antipsychotics on DAT dysfunction-mediated mania behavior in mice. METHODS: DAT knockdown mice received either D2-family receptor antagonist risperidone or asenapine and mania-related behaviors were assessed in the clinically-relevant behavioral pattern monitor to assess spontaneous exploration. RESULTS: Chronic risperidone did not reverse mania-like behavior in DAT knockdown mice. Chronic asenapine reduced mania behavior but this effect was more pronounced in wild-type littermates than in DAT knockdown mice. CONCLUSION: Taken together, these findings suggest that while acute antipsychotic treatment may be beneficial in management of bipolar mania, more targeted therapeutics may be necessary for long-term treatment. Specific investigation into DAT-targeting drugs could improve future treatment of bipolar mania.


Asunto(s)
Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Trastorno Bipolar/tratamiento farmacológico , Antagonistas de los Receptores de Dopamina D2/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/deficiencia , Manía/tratamiento farmacológico , Animales , Antipsicóticos/administración & dosificación , Dibenzocicloheptenos/farmacología , Modelos Animales de Enfermedad , Antagonistas de los Receptores de Dopamina D2/administración & dosificación , Femenino , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Risperidona/farmacología
10.
Arch Clin Neuropsychol ; 36(5): 673-685, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-33159510

RESUMEN

BACKGROUND: Older adults (≥50 years) represent the fastest-growing population of people who use cannabis, potentially due to the increasing promotion of cannabis as medicine by dispensaries and cannabis websites. Given healthy aging and cannabis use are both associated with cognitive decline, it is important to establish the effects of cannabis on cognition in healthy aging. OBJECTIVE: This systematic scoping review used preferred reporting items for systematic reviews and meta-analyses guidelines to critically examine the extent of literature on this topic and highlight areas for future research. METHOD: A search of six databases (PubMed, EMBASE, PsycINFO, Web of Science, Family and Society Studies Worldwide, and CINAHL) for articles published by September 2019, yielded 1,014 unique results. RESULTS: Six articles reported findings for older populations (three human and three rodent studies), highlighting the paucity of research in this area. Human studies revealed largely null results, likely due to several methodological limitations. Better-controlled rodent studies indicate that the relationship between ∆9-tetrahydrocannabinol (THC) and cognitive function in healthy aging depends on age and level of THC exposure. Extremely low doses of THC improved cognition in very old rodents. Somewhat higher chronic doses improved cognition in moderately aged rodents. No studies examined the effects of cannabidiol (CBD) or high-CBD cannabis on cognition. CONCLUSIONS: This systematic scoping review provides crucial, timely direction for future research on this emerging issue. Future research that combines neuroimaging and cognitive assessment would serve to advance understanding of the effects of age and quantity of THC and CBD on cognition in healthy aging.


Asunto(s)
Cannabidiol , Cannabis , Envejecimiento Saludable , Cognición , Pruebas Neuropsicológicas
11.
Drug Alcohol Depend ; 215: 108245, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32871507

RESUMEN

BACKGROUND: Human immunodeficiency virus (HIV)-associated neurocognitive disorders persist in the era of antiretroviral therapy. One factor that is elevated among persons with HIV (PWH) and independently associated with neurocognitive impairment is methamphetamine dependence (METH). Such dependence may further increase cognitive impairment among PWH, by delaying HIV diagnosis (and thus, antiretroviral therapy initiation), which has been posited to account for persistent cognitive impairment among PWH, despite subsequent treatment-related viral load suppression (VLS; <50 copies of the virus per milliliter in plasma or cerebrospinal fluid). This study examined the main and interactive (additive versus synergistic) effects of HIV and history of METH on the sustained attention and vigilance cognitive domain, while controlling for VLS. METHODS: Participants included 205 (median age = 44 years; 77% males; HIV-/METH- n = 67; HIV+/METH - n = 49; HIV-/METH+ n = 36; HIV+/METH+ n = 53) individuals enrolled in the Translational Methamphetamine AIDS Research Center, who completed Conners' and the 5-Choice continuous performance tests (CPTs). RESULTS: METH participants exhibited deficits in sustained attention and vigilance; however, these effects were not significant after excluding participants who had a positive urine toxicology screen for methamphetamine. Controlling for VLS, PWH did not have worse sustained attention and vigilance, but consistently displayed slower reaction times across blocks, relative to HIV- participants. There was no HIV x METH interaction on sustained attention and vigilance. CONCLUSIONS: Recent methamphetamine use among METH people and detectable viral loads are detrimental to sustained attention and vigilance. These findings highlight the need for prompt diagnosis of HIV and initiation of antiretroviral therapy, and METH use interventions.


Asunto(s)
Trastornos Relacionados con Anfetaminas/psicología , Infecciones por VIH/psicología , Adulto , Trastornos Relacionados con Anfetaminas/epidemiología , Atención/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Cognición/efectos de los fármacos , Femenino , Humanos , Masculino , Metanfetamina/farmacología , Persona de Mediana Edad , Trastornos Neurocognitivos , Tiempo de Reacción/efectos de los fármacos , Carga Viral , Adulto Joven
12.
Cell Rep ; 31(9): 107716, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32492425

RESUMEN

To reveal post-traumatic stress disorder (PTSD) genetic risk influences on tissue-specific gene expression, we use brain and non-brain transcriptomic imputation. We impute genetically regulated gene expression (GReX) in 29,539 PTSD cases and 166,145 controls from 70 ancestry-specific cohorts and identify 18 significant GReX-PTSD associations corresponding to specific tissue-gene pairs. The results suggest substantial genetic heterogeneity based on ancestry, cohort type (military versus civilian), and sex. Two study-wide significant PTSD associations are identified in European and military European cohorts; ZNF140 is predicted to be upregulated in whole blood, and SNRNP35 is predicted to be downregulated in dorsolateral prefrontal cortex, respectively. In peripheral leukocytes from 175 marines, the observed PTSD differential gene expression correlates with the predicted differences for these individuals, and deployment stress produces glucocorticoid-regulated expression changes that include downregulation of both ZNF140 and SNRNP35. SNRNP35 knockdown in cells validates its functional role in U12-intron splicing. Finally, exogenous glucocorticoids in mice downregulate prefrontal Snrnp35 expression.


Asunto(s)
Corteza Prefrontal/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Trastornos por Estrés Postraumático/genética , Animales , Estudios de Casos y Controles , Estudios de Cohortes , Dexametasona/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Humanos , Leucocitos/citología , Leucocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Personal Militar , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/sangre , Proteínas Represoras/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/antagonistas & inhibidores , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Trastornos por Estrés Postraumático/sangre , Trastornos por Estrés Postraumático/diagnóstico
13.
Bipolar Disord ; 22(1): 46-58, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31025493

RESUMEN

OBJECTIVES: Bipolar disorder (BD) is a debilitating psychiatric illness affecting 2%-5% of the population. Although mania is the cardinal feature of BD, inattention and related cognitive dysfunction are observed across all stages. Since cognitive dysfunction confers poor functional outcome in patients, understanding the relevant neural mechanisms remains key to developing novel-targeted therapeutics. METHODS: The 5-choice continuous performance test (5C-CPT) is a mouse and fMRI-compatible human attentional task, requiring responding to target stimuli while inhibiting responding to nontarget stimuli, as in clinical CPTs. This task was used to delineate systems-level neural deficits in BD contributing to inattentive performance in human subjects with BD as well as mouse models with either parietal cortex (PC) lesions or reduced dopamine transporter (DAT) expression. RESULTS: Mania BD participants exhibited severe 5C-CPT impairment. Euthymic BD patients exhibited modestly impaired 5C-CPT. High impulsivity BD subjects exhibited reduced PC activation during target and nontarget responding compared with healthy participants. In mice, bilateral PC lesions impaired both target and nontarget responding. In the DAT knockdown mouse model of BD mania, knockdown mice exhibited severely impaired 5C-CPT performance versus wildtype littermates. CONCLUSIONS: These data support the role of the PC in inattention in BD-specifically regarding identifying the appropriate response to target vs nontarget stimuli. Moreover, the findings indicate that severely reduced DAT function/hyperdopaminergia recreates the attentional deficits observed in BD mania patients. Determining the contribution of DAT in the PC to attention may provide a future target for treatment development.


Asunto(s)
Atención/fisiología , Trastorno Bipolar , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Transmisión Sináptica/fisiología , Adulto , Animales , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/metabolismo , Trastorno Bipolar/psicología , Cognición/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Análisis y Desempeño de Tareas
14.
Pharmacol Biochem Behav ; 178: 42-50, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29289701

RESUMEN

Efforts to replicate results from both basic and clinical models have highlighted problems with reproducibility in science. In psychiatry, reproducibility issues are compounded because the complex behavioral syndromes make many disorders challenging to model. We develop translatable tasks that quantitatively measure psychiatry-relevant behaviors across species. The behavioral pattern monitor (BPM) was designed to analyze exploratory behaviors, which are altered in patients with bipolar disorder (BD), especially during mania episodes. We have repeatedly assessed the behavioral effects of reduced dopamine transporter (DAT) expression in the BPM using a DAT knockdown (KD) mouse line (~10% normal expression). DAT KD mice exhibit a profile in the BPM consistent with acutely manic BD patients in the human version of the task-hyperactivity, increased exploratory behavior, and reduced spatial d (Perry et al., 2009). We collected data from multiple DAT KD BPM experiments in our laboratory to assess the reproducibility of behavioral outcomes across experiments. The four outcomes analyzed were: 1) transitions (amount of locomotor activity); 2) rearings (exploratory activity); 3) holepokes (exploratory activity); and 4) spatial d (geometrical pattern of locomotor activity). By comparing DAT KD mice to wildtype (WT) littermates in every experiment, we calculated effect sizes for each of the four outcomes and then calculated a mean effect size using a random effects model. DAT KD mice exhibited robust, reproducible changes in each of the four outcomes, including increased transitions, rearings, and holepokes, and reduced spatial d, vs. WT littermates. Our results demonstrate that the DAT KD mouse line in the BPM is a consistent, reproducible model of mania-relevant behaviors. More work must be done to assess reproducibility of behavioral outcomes across experiments in order to advance the field of psychiatry and develop more effective therapeutics for patients.


Asunto(s)
Conducta Animal/fisiología , Trastorno Bipolar/fisiopatología , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Técnicas de Silenciamiento del Gen , Animales , Antimaníacos/uso terapéutico , Conducta Animal/efectos de los fármacos , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/psicología , Estudios de Cohortes , Agonistas de Dopamina/uso terapéutico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Locomoción/efectos de los fármacos , Locomoción/fisiología , Ratones , Ratones Endogámicos C57BL , Quinolonas/uso terapéutico , Reproducibilidad de los Resultados , Tiofenos/uso terapéutico , Tirosina 3-Monooxigenasa/antagonistas & inhibidores , Ácido Valproico/uso terapéutico , alfa-Metiltirosina/farmacología , alfa-Metiltirosina/uso terapéutico
15.
Psychopharmacology (Berl) ; 236(2): 821-830, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30448990

RESUMEN

BACKGROUND: There is evidence that mGlu2/3 receptors regulate 5-HT2A signaling, interactions that have been theorized to play a role in the antipsychotic-like effects of mGlu2/3 agonists as well as the hallucinogenic effects of 5-HT2A agonists. One approach to unraveling this interaction is through the chronic administration of agonists at the two receptors, which should influence the functional properties of the targeted receptor due to receptor downregulation or desensitization and thereby alter crosstalk between the two receptors. In this study, we investigated whether chronic treatment with the mGlu2/3 agonist LY379268 would alter the behavioral response to a phenethylamine hallucinogen, 25CN-NBOH, which acts as a selective 5-HT2A agonist. METHODS: We first conducted a dose response of 25CN-NBOH (0.1, 0.3, 1, 3, or 10 mg/kg) to confirm the effects on head-twitch response (HTR) and then blockade studies with either the M100907 (0.1 mg/kg) or SB242084 (0.1, 0.3, or 1 mg/kg) to determine the contribution of 5-HT2A and 5-HT2C to 25CN-NBOH-induced HTR, respectively. To determine whether an mGlu2/3 agonist could block 25CN-NBOH-induced HTR, mice were pretreated with vehicle or LY379268 (0.1, 1, or 10 mg/kg) prior to 25CN-NBOH, and HTR was assessed. The effects of chronic LY379268 on 5-HT2A agonist-induced HTR were evaluated by treating mice with either vehicle or LY379268 (10 mg/kg) for 21 days and measuring 25CN-NBOH-induced HTR 48 h after the final LY379268 treatment. The following day (72 h after the final LY379268 treatment), the ability of acute LY379268 to block PCP-induced locomotor activity was assessed. RESULTS: 25CN-NBOH dose-dependently increased the HTR, a 5-HT2A-mediated behavior, in mice. The selective 5-HT2A antagonist M100907 completely blocked the HTR induced by 25CN-NBOH, whereas the selective 5-HT2C antagonist SB242084 had no effect on the HTR. Administration of LY379268 (10 mg/kg SC) attenuated the HTR induced by 1 mg/kg 25CN-NBOH by ~ 50%. Chronic treatment (21 days) with LY379268 also attenuated the HTR response to 25CN-NBOH when tested 48 h after the last dose of LY379268. In locomotor tests, acute LY379268 significantly attenuated PCP-induced locomotor activity in the chronic vehicle treatment group; by contrast, there was only a trend for an overall interaction in the chronic LY379268 group, with LY379268 blocking the locomotor-stimulating effects of PCP only during the last 20 min. CONCLUSIONS: These data are consistent with a functional interaction between mGlu2/3 and 5-HT2A receptors, although the specific mechanism for the interaction is not known. These data support the hypothesis that mGlu2/3 receptors play a prominent role in modulating the behavioral response to 5-HT2A receptor activation.


Asunto(s)
Agonistas de Aminoácidos Excitadores/administración & dosificación , Alucinógenos/farmacología , Fenetilaminas/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Aminoácidos/administración & dosificación , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Relación Dosis-Respuesta a Droga , Fluorobencenos/administración & dosificación , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Piperidinas/administración & dosificación , Psicotrópicos/farmacología , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas de la Serotonina/farmacología
16.
Eur Neuropsychopharmacol ; 28(11): 1217-1231, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30213668

RESUMEN

Cognitive impairments, e.g., reward learning, are present in various psychiatric disorders and warrant treatment. Improving reward-related learning could synergistically enhance psychosocial treatments and cognition generally. A critical first step is to understand the mechanisms underlying reward learning. The dopamine system has been implicated in such learning, but less known is how indirect activation of this system may affect reward learning. We determined the role of alpha7 nicotinic acetylcholine receptors (nAChR) on a probabilistic reversal learning task (PRLT) in mice that includes reward and punishment. Male alpha7 knockout (KO), heterozygous (HT), and wildtype (WT) littermate mice (n = 84) were treated with vehicle, 0.03, or 0.3 mg/kg nicotine. Two cohorts of C57BL/6NJ male mice were treated with various alpha7 nAChR ligands, including the full agonists PNU282877 and AR-R-17779, the positive allosteric modulator CCMI, the partial agonist SSR180711, and the antagonist methyllycaconitine. All mice were then tested in the PRLT. Nicotine (0.3 mg/kg) significantly improved initial reward learning in alpha7 WT and HT mice but did not improve learning in KO mice, suggesting an involvement of the alpha7 nAChR in the pro-learning effects of nicotine. Neither alpha7 nAChR treatments (PNU282987, AR-R-17779, CCMI, SSR180711, nor methyllycaconitine) affected mouse PRLT performance however. Nicotine improved reward learning via a mechanism that may include alpha7 nAChRs. This improvement unlikely relied solely on alpha7 nAChRs however, since no alpha7 nAChR ligand improved reward learning in normal mice. Future assessments of the effects of other nAChR subtypes on reward learning are needed.


Asunto(s)
Condicionamiento Operante/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/genética , Aconitina/análogos & derivados , Aconitina/farmacología , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Noqueados , Antagonistas Nicotínicos/farmacología , Castigo/psicología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores
17.
Neuropharmacology ; 138: 87-96, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29859849

RESUMEN

Non-medical use of prescription stimulants amongst college students is common, with claims of cognitive and academic benefits. The mechanism, magnitude, and pervasiveness of the cognitive enhancing effects of stimulants in healthy adults remain poorly understood however. The present study determined the effects of dextroamphetamine (D-amp) on the 5-choice continuous performance test (5C-CPT) of attention in healthy young adult humans and mice. A mixed gender sample received placebo (n = 29), 10 (n = 17) or 20 mg D-amp (n = 25) in a double-blind fashion before 5C-CPT testing. In addition, male C57BL/6J mice were trained on a touchscreen adaptation of the 5C-CPT and tested after receiving saline or D-amp (0.1, 0.3, 1.0 mg/kg; n = 8/dose). In humans, D-amp significantly improved 5C-CPT performance. Both doses improved signal detection driven by increased hit rate (reduced omissions). Both doses also improved response accuracy and reduced hit reaction time (HRT) variability. In mice, similar effects (improved signal detection, hit rate, and response accuracy) were observed at the moderate dose (0.3 mg/kg). In contrast to human participants however, no effect on HRT variability was detected in mice, with no effect on HRT in either species. Human 5C-CPT performance was consistent with prior studies and consistent with alternative CPT paradigms. The performance of C57BL/6J mice on the touchscreen 5C-CPT mirrored performance of this strain on 5-hole operant chambers. Importantly, comparable facilitation of attention with D-amp was observed in both species. The 5C-CPT provides a cross-species paradigm by which the cognitive enhancing properties of stimulants and the neural underpinnings of attention can be assessed.


Asunto(s)
Anfetamina/farmacología , Atención/efectos de los fármacos , Psicotrópicos/farmacología , Animales , Conducta de Elección/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Pruebas Neuropsicológicas , Adulto Joven
19.
Mol Neuropsychiatry ; 3(3): 151-156, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29594134

RESUMEN

BACKGROUND: The catechol-O-methyltransferase (COMT) Val158Met gene influences cognition and behavior in psychiatric illnesses; its low-activity allele, methionine (Met), may be associated with behavior reflecting catecholamine overactivity. Heightened motor activity and increased positive valence are central features of bipolar disorder (BD) and have been quantified in the human Behavioral Pattern Monitor (hBPM), an exploration paradigm based upon the rodent open field. We examined whether hBPM behavior was related to the COMT gene in a small sample of manic BD patients. METHODS: Twenty-six acutely hospitalized manic BD patients were genotyped for the COMT Val158Met polymorphism and tested in the hBPM, an unfamiliar room containing novel objects. Movements around the hBPM and object interactions were video-recorded for 15 min and rated. RESULTS: Met homozygote BD patients demonstrated significantly more interactions with multiple objects and more time spent with objects in the hBPM. Valine (Val) homozygote patients exhibited the least object exploration, while heterozygote patients demonstrated intermediate levels. CONCLUSION: This preliminary study suggests that arousal and positive valence are influenced in a linear fashion by COMT, presumably due to increased catecholamine in frontal regions, but these findings require replication in a larger sample. The hBPM can enable cross-species and transdiagnostic studies to inform neurobiology of psychiatric disorders.

20.
Biol Psychiatry ; 83(11): 915-923, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29478700

RESUMEN

Athina Markou and others argue forcefully for the adoption of a "translational-back translational strategy" for central nervous system drug discovery involving novel application of drugs with established safety profiles in proof-of-principle studies in humans, which in turn encourage parallel studies using experimental animals to provide vital data on the neural systems and neuropharmacological mechanisms related to the actions of the candidate drugs. Encouraged by the increasing adoption of drug-development strategies involving reciprocal information exchange between preclinical animal studies and related clinical research programs, this review presents additional compelling examples related to the following: 1) the treatment of cognitive deficits that define attention-deficit/hyperactivity disorder; 2) the development of fast-acting antidepressants based on promising clinical effects with low doses of the anesthetic ketamine; and 3) new and effective medications for the treatment of substance misuse. In the context of addressing the unmet medical need for new and effective drugs for treatment of mental ill health, now may be the time to launch major new academic-industry consortia committed to open access of all preclinical and clinical data generated by this research.


Asunto(s)
Descubrimiento de Drogas , Trastornos Mentales/terapia , Modelos Animales , Inhibidores de Captación Adrenérgica/uso terapéutico , Animales , Antidepresivos/uso terapéutico , Clorhidrato de Atomoxetina/uso terapéutico , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno Depresivo/tratamiento farmacológico , Humanos , Ketamina/uso terapéutico , Agonistas Nicotínicos/uso terapéutico , Tabaquismo/tratamiento farmacológico , Vareniclina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...