Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Gels ; 9(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37504421

RESUMEN

Bacterial infection and poor cell recruitment are among the main factors that prolong wound healing. To address this, a strategy is required that can prevent infection while promoting tissue repair. Here, we have created a silver nanoparticle-based hydrogel composite that is antibacterial and provides nutrients for cell growth, while filling cavities of various geometries in wounds that are difficult to reach with other dressings. Silver nanoparticles (AgNPs) were synthesized by chemical reduction and characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and inductively coupled plasma-mass spectroscopy (ICP-MS). Using varying concentrations of AgNPs (200, 400, and 600 ppm), several collagen-based silver-hydrogel nanocomposite candidates were generated. The impact of these candidates on wound healing was assessed in a rat splinted wound model, while their ability to prevent wound infection from a contaminated surface was assessed using a rat subcutaneous infection model. Biocompatibility was assessed using the standard MTT assay and in vivo histological analyses. Synthesized AgNPs were spherical and stable, and while hydrogel alone did not have any antibacterial effect, AgNP-hydrogel composites showed significant antibacterial activity both in vitro and in vivo. Wound healing was found to be accelerated with AgNP-hydrogel composite treatment, and no negative effects were observed compared to the control group. The formulations were non-cytotoxic and did not differ significantly in hematological and biochemical factors from the control group in the in vivo study. By presenting promising antibacterial and wound healing activities, silver-hydrogel nanocomposite offers a safe therapeutic option that can be used as a functional scaffold for an acceleration of wound healing.

2.
Bioengineering (Basel) ; 10(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36978688

RESUMEN

Low dose methotrexate (MTX) is known to effectively decrease type I collagen production in dermal fibroblasts, while increasing the matrix metalloproteinase-1 (MMP-1) production in vitro. For in vivo use as an antifibrotic agent on wounds, a linear and extended controlled release formulation of MTX is required. The objective of this study was to optimize the fabrication of MTX-loaded polymeric microspheres with such properties, and to test the efficacy for the prevention of fibrosis in vivo. Poly lactic-co-glycolic acid (PLGA), Poly (L-lactic acid) (PLLA) and the diblock copolymer, methoxypolyethylene glycol-block-poly (D, L-lactide) (MePEG-b-PDLLA), were used to fabricate microspheres, which were then characterized in terms of size, drug encapsulation efficiency, and in vitro release profiles. The optimized formulation (PLGA with diblock copolymer) showed high drug encapsulation efficiency (>80%), low burst release (~10%) and a gradual release of MTX. The amphipathic diblock copolymer is known to render the microsphere surface more biocompatible. In vivo, these microspheres were effective in reducing fibrotic tissue which was confirmed by quantitative measurement of type I collagen and α-smooth muscle actin expression, demonstrating that MTX can be efficiently encapsulated in PLGA microspheres to provide a delayed, gradual release in wound beds to reduce fibrosis in vivo.

3.
Pharmaceutics ; 14(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893802

RESUMEN

Excessive fibrosis following surgical procedures is a challenging condition with serious consequences and no effective preventive or therapeutic option. Our group has previously shown the anti-fibrotic effect of kynurenic acid (KynA) in vitro and as topical cream formulations or nanofiber dressings in open wounds. Here, we hypothesized that the implantation of a controlled release drug delivery system loaded with KynA in a wound bed can prevent fibrosis in a closed wound. Poly (lactic-co-glycolic acid) (PLGA), and a diblock copolymer, methoxy polyethylene glycol-block-poly (D, L-lactide) (MePEG-b-PDLLA), were used for the fabrication of microspheres which were evaluated for their characteristics, encapsulation efficiency, in vitro release profile, and in vivo efficacy for reduction of fibrosis. The optimized formulation exhibited high encapsulation efficiency (>80%), low initial burst release (~10%), and a delayed, gradual release of KynA. In vivo evaluation of the fabricated microspheres in the PVA model of wound healing revealed that KynA microspheres effectively reduced collagen deposition inside and around PVA sponges and α-smooth muscle actin expression after 66 days. Our results showed that KynA can be efficiently encapsulated in PLGA microspheres and its controlled release in vivo reduces fibrotic tissue formation, suggesting a novel therapeutic option for the prevention or treatment of post-surgical fibrosis.

4.
PLoS One ; 17(6): e0262060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35737933

RESUMEN

Dermal wound healing is a complex process which requires the interaction of many cell types and mediators in a highly sophisticated temporal sequence. Myeloid cells which compose of a significant proportion of the inflammatory cells infiltrate to the to a wound site where they play important roles in clearance of damaged tissue and microorganisms. Myeloid cells have the capacity to be converted into fibroblast-like cells and endothelial cells during wound healing process. However, whether myeloid cells in wounds can convert into epithelial cells where they contribute to healing process is not clear. In this study, we performed double immunofluorescent staining with antibodies for hematopoietic cells and keratinocytes as well as cell tracing technique to investigate hematopoietic cell conversion. The result showed that during the healing process, some of the CD45-positive hematopoietic cells also expressed keratin 14, a marker for keratinocytes. Further, double immunofluorescent staining in dermal wounds, using CD11b and K14 antibodies indicated that CD11b-positive myeloid cells were the origin of newly generated epithelial cells. Through tracing injected labeled splenocyte-derived myeloid cells in skin, we confirmed that myeloid cells were able to convert into keratinocytes in repaired skin. Furthermore, our results from in vivo experiments provided new information on contribution of myeloid cells in hair follicle regeneration. In conclusion, this work highlights the myeloid cell contributions in wound repair and hair follicle regeneration through conversion of M-CSF-stimulated CD11b-positive myeloid cells into epithelial cells in a murine model.


Asunto(s)
Folículo Piloso , Repitelización , Animales , Células Endoteliales , Células Epiteliales , Factor Estimulante de Colonias de Macrófagos/metabolismo , Ratones , Células Mieloides , Regeneración , Piel/metabolismo , Cicatrización de Heridas
5.
Gels ; 8(1)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35049584

RESUMEN

(1) Background: Developing a high-quality, injectable biomaterial that is labor-saving, cost-efficient, and patient-ready is highly desirable. Our research group has previously developed a collagen-based injectable scaffold for the treatment of a variety of wounds including wounds with deep and irregular beds. Here, we investigated the biocompatibility of our liquid scaffold in mice and compared the results to a commercially available injectable granular collagen-based product. (2) Methods: Scaffolds were applied in sub-dermal pockets on the dorsum of mice. To examine the interaction between the scaffolds and the host tissue, samples were harvested after 1 and 2 weeks and stained for collagen content using Masson's Trichrome staining. Immunofluorescence staining and quantification were performed to assess the type and number of cells infiltrating each scaffold. (3) Results: Histological evaluation after 1 and 2 weeks demonstrated early and efficient integration of our liquid scaffold with no evident adverse foreign body reaction. This rapid incorporation was accompanied by significant cellular infiltration of stromal and immune cells into the scaffold when compared to the commercial product (p < 0.01) and the control group (p < 0.05). Contrarily, the commercial scaffold induced a foreign body reaction as it was surrounded by a capsule-like, dense cellular layer during the 2-week period, resulting in delayed integration and hampered cellular infiltration. (4) Conclusion: Results obtained from this study demonstrate the potential use of our liquid scaffold as an advanced injectable wound matrix for the management of skin wounds with complex geometries.

6.
Artículo en Inglés | MEDLINE | ID: mdl-33538679

RESUMEN

Type 1 Diabetes (T1D) is a complex autoimmune disorder which occurs as a result of an intricate series of pathologic interactions between pancreatic ß-cells and a wide range of components of both the innate and the adaptive immune systems. Stem-cell therapy, a recently-emerged potentially therapeutic option for curative treatment of diabetes, is demonstrated to cause significant alternations to both different immune cells such as macrophages, natural killer (NK) cells, dendritic cells, T cells, and B cells and non-cellular elements, including serum cytokines and different components of the complement system. Although there exists overwhelming evidence indicating that the documented therapeutic effects of stem cells on patients with T1D are primarily due to their potential for immune regulation rather than pancreatic tissue regeneration, to date, the precise underlying mechanisms remain obscure. On the other hand, immune-mediated rejection of stem cells remains one of the main obstacles to regenerative medicine. Moreover, the consequences of efferocytosis of stem-cells by the recipients' lung-resident macrophages have recently emerged as a mechanism responsible for some immune-mediated therapeutic effects of stem-cells. This review focuses on the nature of the interactions amongst different compartments of the immune systems which are involved in the pathogenesis of T1D and provides an explanation as to how stem cell- based interventions can influence immune system and maintain the physiologic equilibrium.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Humanos , Inmunomodulación , Células Asesinas Naturales , Células Madre
7.
Exp Dermatol ; 31(5): 715-724, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34816490

RESUMEN

Lack of matrix deposition is one of the main factors that complicates the healing process of wounds. The aim of this study was to test the efficacy and safety of a liquid dermal scaffold, referred to as MeshFill (MF) that can fill the complex network of tunnels and cavities which are usually found in chronic wounds and hence improve the healing process. We evaluated in vitro and in vivo properties of a novel liquid dermal scaffold in a delayed murine full-thickness wound model. We also compared this scaffold with two commercially available granular collagen-based products (GCBP). Liquid dermal scaffold accelerated wound closure significantly compared with no-treated control and collagen-based injectable composites in a delayed splinted wound model. When we compared cellular composition and count between MF, no treatment and GCBP at the histology level, it was found that MF was the most analogous and consistent with the normal anatomy of the skin. These findings were matched with the clinical outcome observation. The flowable in situ forming scaffold is liquid at cold temperature and gels after application to the wound site. Therefore, it would conform to the topography of the wound when liquid and provides adequate tensile strength when solidified. This patient-ready gelling dermal scaffold also contains the nutritional ingredients and therefore supports cell growth. Applying an injectable liquid scaffold that can fill wound gaps and generate a matrix to promote keratinocytes and fibroblasts migration, can result in improvement of the healing process of complex wounds.


Asunto(s)
Piel Artificial , Cicatrización de Heridas , Animales , Colágeno , Modelos Animales de Enfermedad , Humanos , Ratones , Piel/lesiones
8.
Exp Dermatol ; 31(4): 475-484, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34932841

RESUMEN

Tissue repair is a very complex event and involves a continuously orchestrated sequence of signals and responses from platelets, fibroblasts, epithelial, endothelial and immune cells. The details of interaction between these signals, which are mainly growth factors and cytokines, have been widely discussed. However, it is still not clear how activated cells at wound sites lessen their activities after epithelialization is completed. Termination of the wound healing process requires a fine balance between extracellular matrix (ECM) deposition and degradation. Maintaining this balance requires highly accurate epithelial-mesenchymal communication and correct information exchange between keratinocytes and fibroblasts. As it has been reported in the literature, a disruption in epithelialization during the process of wound healing increases the frequency of developing chronic wounds or fibrotic conditions, as seen in a variety of clinical cases. Conversely, the potential stop signal for wound healing should have a regulatory role on both ECM synthesis and degradation to reach a successful wound healing outcome. This review briefly describes the potential roles of growth factors and cytokines in controlling the early phase of wound healing and predominantly explores the role of releasable factors from epithelial-mesenchymal interaction in controlling during and the late stage of the healing process. Emphasis will be given on the crosstalk between keratinocytes and fibroblasts in ECM modulation and the healing outcome following a brief discussion of the wound healing initiation mechanism. In particular, we will review the termination of acute dermal wound healing, which frequently leads to the development of hypertrophic scarring.


Asunto(s)
Queratinocitos , Cicatrización de Heridas , Comunicación Celular/fisiología , Citocinas/metabolismo , Fibroblastos/fisiología , Queratinocitos/metabolismo , Cicatrización de Heridas/fisiología
9.
J Diabetes Metab Disord ; 20(1): 1067-1073, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34222099

RESUMEN

INTRODUCTION: Stem-cell therapy, which has recently emerged as a potentially therapeutic option for diabetes, is demonstrated to significantly alter both cellular and non-cellular elements of the immune system. In addition, it is demonstrated that allogenic stem-cells, once considered immune-privileged, can be rejected by the host immune system almost similar to any other somatic cell. To date, nonetheless, details of these intricate interactions remain obscure. The current study is designed to illuminate both aforementioned favorable and unfavorable stem cell-mediated immune reactions. Findings of this study may shed some light on how stem cells may exert their therapeutic effect in type 1 diabetes through immune system-mediated mechanisms and illuminate the partially-obscure immune-caused rejection of these cells. METHODS AND ANALYSIS: For the purpose of this study, frozen whole blood samples obtained from patients with type 1 diabetes who received stem cells at the Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences in two different clinical trials will be thawed and analyzed. These clinical trials were carried out using two different sources of stem cells, namely allogenic fetal and autologous mesenchymal cells. The samples we aim to analyze were obtained from the patients before the procedure and regularly after it, one, three, six, 12, and 24 months later. For the purpose of this study, the following parameters will be measured: C-peptide levels, IDAA1c (a surrogate marker of beta cell function which is calculated as HbA1c (%) + [4 × insulin dose (units per kilogram per day)]), frequencies of islet-specific autoreactive CD8+ T cells (CTL), different lymphocyte subsets, thymic function indicators, T cell repertoire diversity (including Treg/Tconv ratios), plasma levels of several pro- and anti-inflammatory cytokines, diabetes autoantibodies, and HLA typing. ETHICS AND DISSEMINATION: The stem cell transplantation clinical trials which provided the primary source of our samples were carried out at the Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences between 2008 and 2012. These series of clinical trials have secured approval of the ethics committee of Tehran University of Medical Sciences (ethical code number: E-0089) and registered on the national clinical trial registry of Islamic Republic of Iran (IRCT) with the identifier codes: IRCT138810271414N8 (for autologous mesenchymal cells) and IRCT201103171414N23 (for allogenic fetal cells). Our findings are to be presented at international scientific events, published in peer-reviewed journals, and disseminated both electronically and in print. Besides, results of the current study will be used for design and implementation of future laboratory investigations and clinical trials at the Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences.

10.
Med J Islam Repub Iran ; 35: 172, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35685200

RESUMEN

Background:The burn wound is one of the health problems in the world that affects physical and mental health. Today, adipose-derived mesenchymal stem cells (ADSCs) have received medical attention for their accessibility and the ability to reproduce and repair. The present study was designed to investigate the effect of ADSCs on burn wound healing. Methods : The present experimental study was performed on 36 male Wistar rats divided into 1 control group and 3 experimental groups. The second-degree burns with a radius of 10 mm were induced after anesthesia. ADSCs and Dulbecco's Modified Eagle Medium (DMEM) were injected into the dermis around the burn area in the ADSCs and DMEM groups, respectively. Silver sulfadiazine (SSD) ointment was applied topically once daily as the SSD group. The control group did not receive any treatment. The rats were evaluated for 21 days. Wound healing rate, histopathological parameters, and the number of fibroblasts were evaluated by the immunofluorescence technique and vascular endothelial growth factor and transforming growth factor ß (TGF-ß) gene expression by reverse transcription-polymerase chain reaction. The results were entered into SPSS software (SPSS Inc) and analyzed with 1-way analysis of variance and repeated measures analysis. Results: The number of fibroblasts, the number of vessels, TGF-ß, and VEGF gene expression in the burn area were significantly higher in the ADSCs group than in the SSD, DMEM, and control groups. The results also showed that the amount of inflammation was significantly lower in the ADSCs group compared with the control group (p<0.001). Moreover, the percentage of wound recovery was significantly higher in the ADSCs group compared with other groups (p<0.001). Conclusion: ADSCs accelerate and improve burn wound healing by affecting fibroblasts, keratinocytes, and inflammatory cells as well as increasing the expression of the TGF-ß and VEGF genes, and thus increase in angiogenesis.

11.
J Burn Care Res ; 42(4): 785-793, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33313805

RESUMEN

For centuries, silver has been recognized for its antibacterial properties. With the development of nanotechnology, silver nanoparticles (AgNPs) have garnered significant attention for their diverse uses in antimicrobial gel formulations, dressings for wound healing, orthopedic applications, medical catheters and instruments, implants, and contact lens coatings. A major focus has been determining AgNPs' physical, chemical, and biological characteristics and their potential to be incorporated in biocomposite materials, particularly hydrogel scaffolds, for burn and wound healing. Though AgNPs have been rigorously explored and extensively utilized in medical and nonmedical applications, important research is still needed to elucidate their antibacterial activity when incorporated in wound-healing scaffolds. In this review, we provide an up-to-date, 10-yr (2010-2019), comprehensive literature review on advancements in the understanding of AgNP characteristics, including the particles' preparation and mechanisms of activity, and we explore various hydrogel scaffolds for delivering AgNPs.


Asunto(s)
Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Quemaduras/tratamiento farmacológico , Nanopartículas del Metal/uso terapéutico , Plata/uso terapéutico , Infección de Heridas/prevención & control , Administración Tópica , Vendajes , Humanos , Cicatrización de Heridas
12.
Adv Wound Care (New Rochelle) ; 10(3): 113-122, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32320360

RESUMEN

Objective: Full-thickness burn wounds require immediate coverage, and the primary clinical approaches comprise of skin allografts and autografts. The use of allografts is often temporary due to the antigenicity of allografts. In contrast, the availability of skin autografts may be limited in large burn injuries. In such cases, skin autografts can be expanded through the use of a skin mesher, creating meshed split-thickness skin grafts (MSTSGs). MSTSGs have revolutionized the treatment of large full-thickness burn injuries since the 1960s. However, contractures and poor esthetic outcomes remain a problem. We previously formulated and prepared an in situ forming skin substitute, called MeshFill (MF), which can conform to complex shapes and contours of wounds. The objective of this study was to assess the esthetic and wound healing outcomes in full-thickness wounds treated with a combination of MF and MSTSG in a porcine model. Approach: Either MSTSGs or MSTSG+MF was applied to full-thickness excisional wounds in Yorkshire pigs. Wound healing outcomes were assessed using histology, immunohistochemistry, and wound surface area analysis from day 10 to 60. Clinical evaluation of wounds were utilized to assess esthetic outcomes. Results: The results demonstrated that the combination of MSTSGs and MF improved wound healing and esthetic outcomes. Innovation: Effects of MSTSGs and reconstitutable liquid MF in a full-thickness porcine model were investigated for the first time. Conclusion: MF provides promise as a combination therapeutic regimen to improve wound healing and esthetic outcomes.


Asunto(s)
Quemaduras/cirugía , Trasplante de Piel/métodos , Cicatrización de Heridas/fisiología , Animales , Quemaduras/patología , Modelos Animales de Enfermedad , Estética , Femenino , Piel Artificial , Porcinos , Temperatura
13.
J Investig Dermatol Symp Proc ; 20(1): S16-S21, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33099378

RESUMEN

Alopecia areata (AA), which is defined as an autoimmune hair loss disease, has a serious impact on the quality of life for patients with AA worldwide. In this study, to our knowledge, a previously unreported method of AA induction in C3H mice has been established and validated. Using this method, we showed that dermal injection of 1-3 million of a mixture of skin cells freshly isolated from AA-affected skin induces AA in more than 80% of healthy mice. Contrary to the previous protocol, the induction of AA by this approach does not need any surgical AA skin grafting, cell manipulation, or high number of activated T cells. We also showed that dermal injection of adherent myeloid cells (mainly CD11b+) in healthy mice is as potent as a mixture of none adherent CD3+ T cells and CD19+ B cells in the induction of AA. Interestingly, most of the mice (7 out of 8) that received non-adherent cells developed AA universalis, whereas most of the mice (5 out of 7) that received adherent cells developed patchy AA. Finally, we found a high number of stage-specific embryonic antigen-expressing cells whose expression in monocytes in an inflammatory disease causes the release of inflammatory cytokines, TNF-α and IL-1ß, from these cells in AA-affected skin.


Asunto(s)
Alopecia Areata/metabolismo , Alopecia Areata/patología , Células Mieloides/metabolismo , Células Mieloides/trasplante , Animales , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Antígeno CD11b/metabolismo , Adhesión Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Antígeno Lewis X/metabolismo , Ratones , Ratones Endogámicos C3H , Antígenos Embrionarios Específico de Estadio/metabolismo
14.
Acta Biomater ; 113: 144-163, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32590170

RESUMEN

Abnormal wound healing caused by the over-expression of collagen and fibronectin leads to fibrosis, the major complication of all treatment modalities. A three-layer nanofiber scaffold was designed, optimized, and fabricated. This scaffold comprised two supportive polycaprolactone (PCL)-chitosan layers on the sides and a polyvinyl alcohol (PVA)-metformin hydrochloride (metformin-HCl) in the middle. The physico-chemical properties of scaffold, such as mechanical characteristics, degradation, swelling, and in-vitro drug release, were evaluated. The biological tests, including cell viability in response to metformin-HCl and Tween 80, scaffold biocompatibility, cell attachment, and antibacterial activity, were further conducted. The wound healing effect of scaffold loaded with metformin-HCl (MSc+Met) was assessed in donut-shaped silicone splints in rats. Histopathological and immunohistochemical evaluation as well as mRNA expression levels of fibrosis markers were also studied. SEM images indicated a uniform, bead-less morphology and high porosity. Surface modification of scaffold by Tween 80 improved the surface hydrophilicity and enhanced the adhesion and proliferation of fibroblasts. The scar area on day 15 in MSc+Met was significantly lower than that of other groups. Histopathological and immunohistochemical evaluation revealed that group MSc+Met was the best, having significantly lower inflammation, higher angiogenesis, the smallest scar width and depth, maximum epitheliogenesis score, and the most optimal modulation of collagen density. Local administration of metformin-HCl substantially down-regulated the expression of fibrosis-involved genes: transforming growth factor (TGF-ß1), collagen type 1 (Col-I), fibronectin, collagen type 3 (Col-III), and alpha-smooth muscle actin (α-SMA). Inhibiting these genes alleviates scar formation but delays wound healing; thus, an engineered scaffold was used to prevent delay in wound healing. These results provided evidence for the first time to introduce an anti-fibrogenic slow-releasing scaffold, which acts in a dual role, both alleviating fibrosis and accelerating wound healing.


Asunto(s)
Preparaciones de Acción Retardada , Hipoglucemiantes , Metformina , Nanofibras , Animales , Colágeno , Preparaciones de Acción Retardada/farmacología , Hipoglucemiantes/administración & dosificación , Metformina/farmacología , Ratas , Andamios del Tejido , Cicatrización de Heridas
15.
Am J Infect Control ; 48(9): 1062-1067, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32565272

RESUMEN

BACKGROUND: The emergence of the novel virus, SARS-CoV-2, has posed unprecedented challenges to public health around the world. Currently, strategies to deal with COVID-19 are purely supportive and preventative, aimed at reducing transmission. An effective and simple method for reducing transmission of infections in public or healthcare settings is hand hygiene. Unfortunately, little is known regarding the efficacy of hand sanitizers against SARS-CoV-2. METHODS: In this review, an extensive literature search was performed to succinctly summarize the primary active ingredients and mechanisms of action of hand sanitizers, compare the effectiveness and compliance of gel and foam sanitizers, and predict whether alcohol and non-alcohol hand sanitizers would be effective against SARS-CoV-2. RESULTS: Most alcohol-based hand sanitizers are effective at inactivating enveloped viruses, including coronaviruses. With what is currently known in the literature, one may not confidently suggest one mode of hand sanitizing delivery over the other. When hand washing with soap and water is unavailable, a sufficient volume of sanitizer is necessary to ensure complete hand coverage, and compliance is critical for appropriate hand hygiene. CONCLUSIONS: By extrapolating effectiveness of hand sanitizers on viruses of similar structure to SARS-CoV-2, this virus should be effectively inactivated with current hand hygiene products, though future research should attempt to determine this directly.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/prevención & control , Higiene de las Manos/métodos , Desinfectantes para las Manos/análisis , Pandemias/prevención & control , Neumonía Viral/prevención & control , COVID-19 , Etanol/análisis , Humanos , SARS-CoV-2 , Jabones/análisis
16.
J Burn Care Res ; 41(1): 48-56, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-31999336

RESUMEN

Hypertrophic scarring (HSc) is an age-old problem that still affects millions of people physically, psychologically, and economically. Despite advances in surgical techniques and wound care, prevention and treatment of HSc remains a challenge. Elucidation of factors involved in the development of this common fibroproliferative disorder is crucial for further progress in preventive and/or therapeutic measures. Our knowledge about pathophysiology of HSc at the cellular and molecular level has grown considerably in recent decades. In this article, current knowledge of predisposing factors and the cellular and molecular mechanisms of HSc has been reviewed.


Asunto(s)
Quemaduras/complicaciones , Cicatriz Hipertrófica/etiología , Cicatriz Hipertrófica/patología , Quemaduras/patología , Quemaduras/fisiopatología , Cicatriz Hipertrófica/fisiopatología , Humanos , Factores de Riesgo
17.
Adv Wound Care (New Rochelle) ; 8(2): 58-70, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31737409

RESUMEN

Background and Objective: Despite the effectiveness of skin autotransplantation, the high degree of immunogenicity of the skin precludes the use of allografts and systemic immunosuppression is generally inappropriate for isolated skin grafts. Indoleamine 2,3 dioxygenase (IDO) is a potent immunoregulatory factor with allo- and autoimmune suppression and tolerance induction properties. This study examines the potential use of locally expressed IDO to prolong the allogeneic skin graft take in a mouse model. Approach: Syngeneic-fibroblasts were transfected with noncompetent IDO viral vector and the level of Kynurenine (Kyn) in conditioned medium was measured as an index for IDO activity. Either 1 or 3 × 106 IDO-fibroblasts were introduced intra/hypo-dermally to the mouse skin. The expression, localization, and functionality of IDO were then evaluated. The cell-injected areas were harvested and grafted on the back of allogeneic mice. The graft survival, immune-cells infiltration, and interaction with dendritic cells were evaluated. Results: The results showed a significant improvement in allogeneic graft take injected with 1 × 106 IDO-fibroblasts (18.4 ± 3.3 days) compared with control (12.2 ± 1.9 days). This duration increased to 35.4 ± 4.7 days in grafts injected with 3 × 106 IDO-expressing cells. This observation might be due to a significantly lower T cells infiltration within the IDO-grafts. Further, the result of a flow cytometric analysis showed that the expression of PD-L1/PD-L2 on CD11c+/eFluor+ cells in the regional lymph nodes of injected skin areas was significantly higher in IDO groups compared with control. Conclusion: These data suggest that allogeneic skin graft survival outcome can be prolonged significantly by local overexpression of IDO without any systemic effect.

18.
J Burn Care Res ; 40(6): 727-733, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31314104

RESUMEN

Autologous split thickness skin graft is necessary for the survival of patients with large burns and skin defects. It is not clear how a thin split thickness skin graft becomes remarkably thicker within a few weeks following transplantation. Here, we hypothesized that growth of split thickness graft should be from bottom up probably through conversion of immune cells into collagen producing skin cells. We tested this hypothesis in a preclinical porcine model by grafting split thickness meshed skin (0.508 mm thickness, meshed at 3:1 ratio) on full thickness wounds in pigs. New tissue formation was evaluated on days 10 and 20 postoperation through histological analysis and co-staining for immune cell markers (CD45) and type I collagen. The findings revealed that a split thickness graft grew from bottom up and reached to almost the same level as uninjured skin within 60 days postoperation. The result of immune-staining identified a large number of cells, which co-expressed immune cell marker (CD45) and collagen on day 10 postoperation. Interestingly, as the number of these cells reduced on day 20, most of these cells became positive for collagen production. In another set of experiments, we tested whether immune cells can convert to collagen producing cells in vitro. The results showed that mouse adherent immune cells started to express type 1 procollagen and α-smooth muscle actin when cultured in the presence of fibroblast conditioned media. In conclusion, the early thickening of split thickness graft is likely happening through a major contribution of infiltrated immune cells that convert into mainly collagen producing fibroblasts in large skin injuries.


Asunto(s)
Regeneración , Fenómenos Fisiológicos de la Piel , Trasplante de Piel , Piel/lesiones , Cicatrización de Heridas/fisiología , Actinas/metabolismo , Animales , Autoinjertos , Técnicas de Cultivo de Célula , Diferenciación Celular , Colágeno Tipo I/metabolismo , Fibroblastos/fisiología , Antígenos Comunes de Leucocito/metabolismo , Leucocitos Mononucleares/fisiología , Ratones Endogámicos C57BL , Modelos Animales , Piel/citología , Piel/metabolismo , Porcinos , Heridas y Lesiones/cirugía
19.
J Burn Care Res ; 40(5): 550-557, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31188436

RESUMEN

Wound repair and regeneration is a multidisciplinary field of research with considerable potential value to the management of deep and large burn injuries. These injuries lack an appropriate tissue scaffold and pro-healing cells making them difficult to heal. An alternative to the often limited autologous skin is a therapy that would restore the essential matrix and cellular components for rapid healing. In this study, they use a novel liquid dermal scaffold capable of gelation in vivo to show that it is biocompatible with adipose-derived stem cells. Using a validated method of wound splinting in a delayed-healing murine model, we show that wounds treated with the scaffold and stem cells had a significant reduction in wound size and had accelerated healing compared with control. The wounds treated with stem cells had increased capillary formation, collagen content, epidermal thickness, and essential growth factor expression in the healed tissue compared with control and liquid scaffold alone. This liquid dermal scaffold combined with cells is a feasible treatment strategy for complex or large burn wounds that are otherwise lacking the appropriate cellular matrix necessary for healing.


Asunto(s)
Adipocitos/trasplante , Quemaduras/terapia , Regeneración Tisular Dirigida , Trasplante de Células Madre , Andamios del Tejido , Cicatrización de Heridas/fisiología , Animales , Quemaduras/patología , Modelos Animales de Enfermedad , Femenino , Ratones
20.
Cell Transplant ; 27(6): 994-1004, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29871523

RESUMEN

Alopecia areata (AA) is an autoimmune hair loss disease with infiltration of proinflammatory cells into hair follicles. Current therapeutic regimens are unsatisfactory mainly because of the potential for side effects and/or limited efficacy. Here we report that cultured, transduced fibroblasts, which express the immunomodulatory molecule indoleamine 2,3-dioxygenase (IDO), can be applied to prevent hair loss in an experimental AA model. A single intraperitoneal (IP) injection of IDO-expressing primary dermal fibroblasts was given to C3H/HeJ mice at the time of AA induction. While 60-70% of mice that received either control fibroblasts or vehicle injections developed extensive AA, none of the IDO-expressing fibroblast-treated mice showed new hair loss up to 20 weeks post injection. IDO cell therapy significantly reduced infiltration of CD4+ and CD8+ T cells into hair follicles and resulted in decreased expression of TNF-α, IFN-γ and IL-17 in the skin. Skin draining lymph nodes of IDO fibroblast-treated mice were significantly smaller, with more CD4+ CD25+ FoxP3+ regulatory T cells and fewer Th17 cells than those of control fibroblast and vehicle-injected mice. These findings indicate that IP injected IDO-expressing dermal fibroblasts can control inflammation and thereby prevent AA hair loss.


Asunto(s)
Alopecia Areata/terapia , Fibroblastos/trasplante , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Alopecia Areata/patología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Citocinas/análisis , Modelos Animales de Enfermedad , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones Endogámicos C3H , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...