Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 9(12)2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255741

RESUMEN

Following a prolonged exposure to hypoxia-reoxygenation, a partial disruption of the ER-mitochondria tethering by mitofusin 2 (MFN2) knock-down decreases the Ca2+ transfer between the two organelles limits mitochondrial Ca2+ overload and prevents the Ca2+-dependent opening of the mitochondrial permeability transition pore, i.e., limits cardiomyocyte cell death. The impact of the metabolic changes resulting from the alteration of this Ca2+crosstalk on the tolerance to hypoxia-reoxygenation injury remains partial and fragmented between different field of expertise. >In this study, we report that MFN2 loss of function results in a metabolic switch driven by major modifications in energy production by mitochondria. During hypoxia, mitochondria maintain their ATP concentration and, concomitantly, the inner membrane potential by importing cytosolic ATP into mitochondria through an overexpressed ANT2 protein and by decreasing the expression and activity of the ATP hydrolase via IF1. This adaptation further blunts the detrimental hyperpolarisation of the inner mitochondrial membrane (IMM) upon re-oxygenation. These metabolic changes play an important role to attenuate cell death during a prolonged hypoxia-reoxygenation challenge.


Asunto(s)
Translocador 2 del Nucleótido Adenina/metabolismo , Adenosina Trifosfato/metabolismo , Hipoxia/metabolismo , Mitocondrias/metabolismo , Animales , Calcio/metabolismo , Muerte Celular/fisiología , Línea Celular , Potencial de la Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Ratas
2.
J Biol Chem ; 294(42): 15282-15292, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31434742

RESUMEN

Calcium homeostasis is essential for cell survival and is precisely controlled by several cellular actors such as the sarco/endoplasmic reticulum and mitochondria. Upon stress induction, Ca2+ released from sarco/endoplasmic reticulum stores and from extracellular Ca2+ pools accumulates in the cytosol and in the mitochondria. This induces Ca2+ overload and ultimately the opening of the mitochondrial permeability transition pore (mPTP), promoting cell death. Currently, it is unclear whether intracellular Ca2+ stores are sufficient to promote the mPTP opening. Ca2+ retention capacity (CRC) corresponds to the maximal Ca2+ uptake by the mitochondria before mPTP opening. In this study, using permeabilized cardiomyocytes isolated from adult mice, we modified the standard CRC assay by specifically inducing reticular Ca2+ release to investigate the respective contributions of reticular Ca2+ and extracellular Ca2+ to mPTP opening in normoxic conditions or after anoxia-reoxygenation. Our experiments revealed that Ca2+ released from the sarco/endoplasmic reticulum is not sufficient to trigger mPTP opening and corresponds to ∼50% of the total Ca2+ levels required to open the mPTP. We also studied mPTP opening after anoxia-reoxygenation in the presence or absence of extracellular Ca2+ In both conditions, Ca2+ leakage from internal stores could not trigger mPTP opening by itself but significantly decreased the CRC. Our findings highlight how a modified CRC assay enables the investigation of the role of reticular and extracellular Ca2+ pools in the regulation of the mPTP. We propose that this method may be useful for screening molecules of interest implicated in mPTP regulation.


Asunto(s)
Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Muerte Celular , Células Cultivadas , Retículo Endoplásmico/metabolismo , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/citología
3.
Sci Rep ; 7(1): 5040, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698627

RESUMEN

Mitochondrial integrity is critical for the regulation of cellular energy and apoptosis. Metformin is an energy disruptor targeting complex I of the respiratory chain. We demonstrate that metformin induces endoplasmic reticulum (ER) stress, calcium release from the ER and subsequent uptake of calcium into the mitochondria, thus leading to mitochondrial swelling. Metformin triggers the disorganization of the cristae and inner mitochondrial membrane in several cancer cells and tumors. Mechanistically, these alterations were found to be due to calcium entry into the mitochondria, because the swelling induced by metformin was reversed by the inhibition of mitochondrial calcium uniporter (MCU). We also demonstrated that metformin inhibits the opening of mPTP and induces mitochondrial biogenesis. Altogether, the inhibition of mPTP and the increase in mitochondrial biogenesis may account for the poor pro-apoptotic effect of metformin in cancer cells.


Asunto(s)
Calcio/metabolismo , Metabolismo Energético/efectos de los fármacos , Metformina/farmacología , Mitocondrias/metabolismo , Animales , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial/efectos de los fármacos , Modelos Biológicos , Biogénesis de Organelos
4.
Basic Res Cardiol ; 112(4): 35, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28492973

RESUMEN

The opening of the mitochondrial permeability transition pore (PTP), which is regulated by the matrix protein cyclophilin D (CypD), plays a key role in the pathophysiology of post-cardiac arrest (CA) syndrome. We hypothesized that therapeutic hypothermia could prevent post-CA syndrome through a CypD-mediated PTP inhibition in both heart and brain. In addition, we investigated whether specific pharmacological PTP inhibition would confer additive protection to cooling. Adult male New Zealand White rabbits underwent 15 min of CA followed by 120 min of reperfusion. Five groups (n = 10-15/group) were studied: control group (CA only), hypothermia group (HT, hypothermia at 32-34 °C induced by external cooling at reperfusion), NIM group (injection at reperfusion of 2.5 mg/kg NIM811, a specific CypD inhibitor), HT + NIM, and sham group. The following measurements were taken: hemodynamics, echocardiography, and cellular damage markers (including S100ß protein and troponin Ic). Oxidative phosphorylation and PTP opening were assessed on mitochondria isolated from both brain and heart. Acetylation of CypD was measured by immunoprecipitation in both the cerebral cortex and myocardium. Hypothermia and NIM811 significantly prevented cardiovascular dysfunction, pupillary areflexia, and early tissue damage. Hypothermia and NIM811 preserved oxidative phosphorylation, limited PTP opening in both brain and heart mitochondria and prevented increase in CypD acetylation in brain. There were no additive beneficial effects in the combination of NIM811 and therapeutic hypothermia. In conclusion, therapeutic hypothermia limited post-CA syndrome by preventing mitochondrial permeability transition mainly through a CypD-dependent mechanism.


Asunto(s)
Encefalopatías/prevención & control , Encéfalo/efectos de los fármacos , Ciclofilinas/antagonistas & inhibidores , Ciclosporina/farmacología , Inhibidores Enzimáticos/farmacología , Paro Cardíaco/terapia , Hipotermia Inducida , Mitocondrias Cardíacas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocardio/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Encefalopatías/metabolismo , Encefalopatías/patología , Encefalopatías/fisiopatología , Reanimación Cardiopulmonar , Terapia Combinada , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Modelos Animales de Enfermedad , Paro Cardíaco/metabolismo , Paro Cardíaco/patología , Paro Cardíaco/fisiopatología , Hemodinámica/efectos de los fármacos , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Poro de Transición de la Permeabilidad Mitocondrial , Miocardio/patología , Fosforilación Oxidativa/efectos de los fármacos , Conejos , Transducción de Señal , Síndrome
5.
J Cardiovasc Pharmacol ; 69(5): 326-334, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28328748

RESUMEN

BACKGROUND: Volatile anesthetics are known to limit myocardial ischemia-reperfusion injuries. Mitochondria were shown to be major contributors to cardioprotection. Cyclophilin D (CypD) is one of the main regulators of mitochondria-induced cell death. We compared the effect of isoflurane, sevoflurane, and desflurane in the presence or absence of CypD, to clarify its role in the mechanism of cardioprotection induced by these anesthetics. METHODS: Oxidative phosphorylation, mitochondrial membrane potential, and H2O2 production were measured in isolated mitochondria from wild-type (WT) or CypD knockout mice in basal conditions and after hypoxia-reoxygenation in the presence or absence of volatile anesthetics. RESULTS: All volatile anesthetics inhibited mitochondrial state 3 of complex I, decreased membrane potential, and increased adenosine diphosphate consumption duration in both WT and CypD knockout mice. However, they differently modified H2O2 production after stimulation by succinate: CypD ablation reduced H2O2 production, isoflurane decreased H2O2 level in WT but not in CypD knockout mice, sevoflurane affected both lines whereas desflurane increased H2O2 production in CypD knockout and had no effect on WT mice. CONCLUSIONS: This study showed different effects of isoflurane, sevoflurane, and desflurane on mitochondrial functions and highlighted the implication of CypD in the regulation of adenosine diphosphate consumption and complex I-induced radical oxygen species production.


Asunto(s)
Anestésicos por Inhalación/farmacología , Ciclofilinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Isoflurano/análogos & derivados , Éteres Metílicos/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Sustancias Protectoras/farmacología , Adenosina Trifosfato/metabolismo , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/deficiencia , Ciclofilinas/genética , Citoprotección , Desflurano , Genotipo , Peróxido de Hidrógeno/metabolismo , Isoflurano/farmacología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fosforilación Oxidativa/efectos de los fármacos , Fenotipo , Sevoflurano , Factores de Tiempo
6.
Basic Res Cardiol ; 112(1): 4, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27995363

RESUMEN

Reperfusion injury is responsible for an important part of myocardial infarct establishment due notably to triggering cardiomyocytes death at the first minutes of reperfusion. AZP-531 is an optimized analog of unacylated ghrelin currently in clinical development in several metabolic diseases. We investigated a potential cardioprotective effect of AZP-531 in ischemia/reperfusion (IR) and the molecular underlying mechanism(s) involved in this protection. In vivo postconditioning with AZP-531 in C57BL6 mouse IR model decreased infarct size. Western blot analysis on areas at risk from the different mouse groups showed that AZP-531 activates Akt, ERK1-2 as well as S6 and 4EBP1, mTORC1 effectors. We also showed an inhibition of caspase 3 cleavage and Bax translocation to the mitochondria. AZP-531 also stimulated the expression of antioxidants and was capable of decreasing mitochondrial H2O2 production, contributing to the reduction of ROS accumulation. AZP-531 exhibits cardioprotective effect when administrated for postconditioning in C57BL6 mouse IR model. Treatment with AZP-531 rescued the myocardium from cell death at early reperfusion by stimulating protein synthesis, inhibiting Bax/caspase 3-induced apoptosis as well as ROS accumulation and oxidative stress-induced necrosis. AZP-531 may prove useful in the treatment of IR injury.


Asunto(s)
Ghrelina/farmacología , Poscondicionamiento Isquémico/métodos , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Péptidos Cíclicos/farmacología , Animales , Western Blotting , Modelos Animales de Enfermedad , Ghrelina/análogos & derivados , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial
7.
PLoS One ; 11(10): e0164066, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27723783

RESUMEN

BACKGROUND: Recent data suggests the involvement of mitochondrial dynamics in cardiac ischemia/reperfusion (I/R) injuries. Whilst excessive mitochondrial fission has been described as detrimental, the role of fusion proteins in this context remains uncertain. OBJECTIVES: To investigate whether Opa1 (protein involved in mitochondrial inner-membrane fusion) deficiency affects I/R injuries. METHODS AND RESULTS: We examined mice exhibiting Opa1delTTAG mutations (Opa1+/-), showing 70% Opa1 protein expression in the myocardium as compared to their wild-type (WT) littermates. Cardiac left-ventricular systolic function assessed by means of echocardiography was observed to be similar in 3-month-old WT and Opa1+/- mice. After subjection to I/R, infarct size was significantly greater in Opa1+/- than in WTs both in vivo (43.2±4.1% vs. 28.4±3.5%, respectively; p<0.01) and ex vivo (71.1±3.2% vs. 59.6±8.5%, respectively; p<0.05). No difference was observed in the expression of other main fission/fusion protein, oxidative phosphorylation, apoptotic markers, or mitochondrial permeability transition pore (mPTP) function. Analysis of calcium transients in isolated ventricular cardiomyocytes demonstrated a lower sarcoplasmic reticulum Ca2+ uptake, whereas cytosolic Ca2+ removal from the Na+/Ca2+ exchanger (NCX) was increased, whilst SERCA2a, phospholamban, and NCX protein expression levels were unaffected in Opa1+/- compared to WT mice. Simultaneous whole-cell patch-clamp recordings of mitochondrial Ca2+ movements and ventricular action potential (AP) showed impairment of dynamic mitochondrial Ca2+ uptake and a marked increase in the AP late repolarization phase in conjunction with greater occurrence of arrhythmia in Opa1+/- mice. CONCLUSION: Opa1 deficiency was associated with increased sensitivity to I/R, imbalance in dynamic mitochondrial Ca2+ uptake, and subsequent increase in NCX activity.


Asunto(s)
Calcio/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Modelos Animales de Enfermedad , GTP Fosfohidrolasas/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Mutantes , Mitocondrias Cardíacas/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
8.
Anesthesiology ; 123(6): 1374-84, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26460965

RESUMEN

BACKGROUND: The mitochondrial permeability transition pore (PTP) has been established as an important mediator of ischemia-reperfusion-induced cell death. The matrix protein cyclophilin D (CypD) is the best known regulator of PTP opening. Therefore, the authors hypothesized that isoflurane, by inhibiting the respiratory chain complex I, another regulator of PTP, might reinforce the myocardial protection afforded by CypD inhibition. METHODS: Adult mouse or isolated cardiomyocytes from wild-type or CypD knockout (CypD-KO) mice were subjected to ischemia or hypoxia followed by reperfusion or reoxygenation. Infarct size was assessed in vivo. Mitochondrial membrane potential and PTP opening were assessed using tetramethylrhodamine methyl ester perchlorate and calcein-cobalt fluorescence, respectively. Fluo-4 AM and rhod-2 AM staining allowed the measurement, by confocal microscopy, of Ca transient and Ca transfer from sarcoplasmic reticulum (SR) to mitochondria after caffeine stimulation. RESULTS: Both inhibition of CypD and isoflurane significantly reduced infarct size (-50 and -37%, respectively) and delayed PTP opening (+63% each). Their combination had no additive effect (n = 6/group). CypD-KO mice displayed endogenous protection against ischemia-reperfusion. Isoflurane depolarized the mitochondrial membrane (-28%, n = 5), decreased oxidative phosphorylation (-59%, n = 5), and blunted the caffeine-induced Ca transfer from SR to mitochondria (-22%, n = 7) in the cardiomyocytes of wild-type mice. Importantly, this transfer was spontaneously decreased in the cardiomyocytes of CypD-KO mice (-25%, n = 4 to 5). CONCLUSIONS: The results suggest that the partial inhibitory effect of isoflurane on respiratory complex I is insufficient to afford a synergy to CypD-induced protection. Isoflurane attenuates the Ca transfer from SR to mitochondria, which is also the prominent role of CypD, and finally prevents PTP opening.


Asunto(s)
Calcio/metabolismo , Ciclofilinas/metabolismo , Precondicionamiento Isquémico Miocárdico , Isoflurano/administración & dosificación , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Anestésicos por Inhalación/administración & dosificación , Animales , Peptidil-Prolil Isomerasa F , Complejo I de Transporte de Electrón/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo
9.
J Appl Physiol (1985) ; 117(8): 930-6, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25213634

RESUMEN

Opening of the mitochondrial permeability transition pore (mPTP) appears to be a pivotal event in myocardial ischemia-reperfusion (I/R) injury. Resuscitated cardiac arrest (CA) leads to the post-CA syndrome that encompasses, not only myocardial dysfunction, but also brain injury, failure of other organs (kidney, liver, or lung), and systemic response to I/R. We aimed to determine whether cyclosporine A (CsA) might prevent multiple organ failure following CA through a ubiquitous mPTP inhibition in each distant vital organ. Anesthetized New Zealand White rabbits were subjected to 15 min of CA and 120 min of reperfusion. At the onset of resuscitation, the rabbits received CsA, its non-immunosuppressive derivative NIM811, or vehicle (controls). Survival, hemodynamics, brain damage, organ injuries, and systemic I/R response were analyzed. Fresh mitochondria were isolated from the brain, heart, kidney, liver, and lung to assess both oxidative phosphorylation and permeability transition. CsA analogs significantly improved short-term survival and prevented multiple organ failure, including brain damage and myocardial dysfunction (P < 0.05 vs. controls). Susceptibility of mPTP opening was significantly increased in heart, brain, kidney, and liver mitochondria isolated from controls, while mitochondrial respiration was impaired (P < 0.05 vs. sham). CsA analogs prevented these mitochondrial dysfunctions (P < 0.05 vs. controls). These results suggest that CsA and NIM811 can prevent the post-CA syndrome through a ubiquitous mitochondrial protective effect at the level of each major distant organ.


Asunto(s)
Cardiotónicos/farmacología , Ciclosporina/farmacología , Paro Cardíaco/fisiopatología , Insuficiencia Multiorgánica/prevención & control , Animales , Respiración de la Célula/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Insuficiencia Multiorgánica/fisiopatología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/fisiopatología , Fosforilación Oxidativa/efectos de los fármacos , Conejos
10.
Basic Res Cardiol ; 108(5): 379, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23955512

RESUMEN

We examined the effects on infarct size and mitochondrial function of ischemic (Isch), cyclosporine A (CsA) and isoflurane (Iso) preconditioning and postconditioning in the in vivo rat model. Anesthetized open-chest rats underwent 30 min of ischemia followed by either 120 min (protocol 1: infarct size assessment) or 15 min of reperfusion (protocol 2: assessment of mitochondrial function). All treatments administered before the 30-min ischemia (Pre-Isch, Pre-CsA, Pre-Iso) significantly reduced infarct as compared to control. In contrast, only Post-Iso significantly reduced infarct size, while Post-Isch and Post-CsA had no significant protective effect. As for the postconditioning-like interventions, the mitochondrial calcium retention capacity significantly increased only in the Post-Iso group (+58 % vs control) after succinate activation. Only Post-Iso increased state 3 (+177 and +62 %, for G/M and succinate, respectively) when compared to control. Also, Post-Iso reduced the hydrogen peroxide (H2O2) production (-46 % vs control) after complex I activation. This study suggests that isoflurane, but not cyclosporine A, can prevent lethal reperfusion injury in this in vivo rat model. This might be related to the need for a combined effect on cyclophilin D and complex I during the first minutes of reperfusion.


Asunto(s)
Ciclosporina/farmacología , Inhibidores Enzimáticos/farmacología , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Anestésicos por Inhalación/farmacología , Animales , Modelos Animales de Enfermedad , Poscondicionamiento Isquémico/métodos , Precondicionamiento Isquémico Miocárdico/métodos , Isoflurano/farmacología , Masculino , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica/prevención & control , Ratas , Ratas Wistar
11.
J Vasc Surg ; 57(4): 1100-1108.e2, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23332985

RESUMEN

OBJECTIVE: By binding to cyclophilin D, cyclosporine A (CsA) inhibits mitochondrial permeability transition pore (mPTP) opening and prevents mitochondrial dysfunction and ultimately cell death after ischemia-reperfusion (IR) injury in cardiac muscle. This study tested whether CsA would decrease skeletal muscle oxidative stress and mitochondrial dysfunctions after aortic cross-clamping related IR. METHODS: Forty-five Wistar rats were investigated. The sham group (n = 8) had aortic exposure but no ischemia, the IR group (n = 10) had aortic cross-clamping for 3 hours followed by 2 hours of reperfusion, and the IR+CsA group (n = 9) had two intraperitoneal injections of 10 mg of CsA at 90 and 150 minutes of ischemia before reperfusion. Mitochondrial coupling (acceptor control ratio) and mitochondrial respiratory chain complexes' activities were measured. Reactive oxygen species (ROS) production, cyclophilin D expression, and muscle inflammation were determined using dihydroethidium staining, Western blot, and immunohistochemistry, respectively. An additional 18 sham rats were investigated to determine CsA blood levels and the effects of CsA on mitochondrial respiration and calcium retention capacity, a marker of mPTP opening, both in myocardium and gastrocnemius with and without CsA. RESULTS: Compared with sham, IR decreased mitochondrial coupling (1.38 ± 0.06 vs 1.98 ± 0.20; P = .0092), increased ROS production (3992 ± 706 arbitrary units [AU] vs 1812 ± 322 AU; P = .033), was associated with macrophage infiltration, and decreased maximal oxidative capacity (V(max): 4.08 ± 0.38 µmol O(2)/min/g vs 5.98 ± 0.56 µmol O(2)/min/g; P = .015). Despite IR, CsA treatment totally restored mitochondrial coupling (1.93 ± 0.12; P = .023 vs IR), normalized ROS (1569 ± 348 AU; P = .0098 vs IR), and decreased inflammation. The V(max) was slightly enhanced (5.02 ± 0.39 µmol O(2)/min/g; P = .33 vs IR; P = .35 vs sham). Compared with myocardium, gastrocnemius muscle was characterized by a decreased cyclophilin D content (-50%) associated with an earlier opening of mPTP (calcium retention capacity increased from 10.85 ± 1.35 µM/mg dry weight [DW] to 12.11 ± 2.77 µM/mg DW; P = .65; and from 11.07 ± 1.67 to 37.65 ± 11.41 µM/mg DW; P = .0098 in gastrocnemius and heart, respectively). CONCLUSIONS: Cyclosporine A normalized ROS production, decreased inflammation, and restored mitochondrial coupling during aortic cross-clamping. Incomplete Vmax protection might be due to low cyclophilin D expression in gastrocnemius, preventing CsA from blocking mPTP opening.


Asunto(s)
Aorta/cirugía , Ciclosporina/farmacología , Metabolismo Energético/efectos de los fármacos , Inflamación/prevención & control , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/prevención & control , Animales , Aorta/fisiopatología , Western Blotting , Calcio/metabolismo , Constricción , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Ciclosporina/administración & dosificación , Ciclosporina/sangre , Modelos Animales de Enfermedad , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Inmunohistoquímica , Inflamación/metabolismo , Inflamación/fisiopatología , Inyecciones Intraperitoneales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Musculares/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/metabolismo , Daño por Reperfusión/fisiopatología , Factores de Tiempo
12.
J Cereb Blood Flow Metab ; 33(1): 137-45, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23047273

RESUMEN

The aim of the study was to better understand blood-flow changes in large arteries and microvessels during the first 15 minutes of reflow in a P7 rat model of arterial occlusion. Blood-flow changes were monitored by using ultrasound imaging with sequential Doppler recordings in internal carotid arteries (ICAs) and basilar trunk. Relative cerebral blood flow (rCBF) changes were obtained by using laser speckle Doppler monitoring. Tissue perfusion was measured with [(14)C]-iodoantipyrine autoradiography. Cerebral energy metabolism was evaluated by mitochondrial oxygen consumption. Gradual increase in mean blood-flow velocities illustrated a gradual perfusion during early reflow in both ICAs. On ischemia, the middle cerebral artery (MCA) territory presented a residual perfusion, whereas the caudal territory remained normally perfused. On reflow, speckle images showed a caudorostral propagation of reperfusion through anastomotic connections, and a reduced perfusion in the MCA territory. Autoradiography highlighted the caudorostral gradient, and persistent perfusion in ventral and medial regions. These blood-flow changes were accompanied by mitochondrial respiration impairment in the ipsilateral cortex. Collectively, these data indicate the presence of a primary collateral pathway through the circle of Willis, providing an immediate diversion of blood flow toward ischemic regions, and secondary efficient cortical anastomoses in the immature rat brain.


Asunto(s)
Arteria Carótida Interna/fisiopatología , Circulación Cerebrovascular/fisiología , Microvasos/fisiopatología , Arteria Cerebral Media/fisiopatología , Daño por Reperfusión/fisiopatología , Accidente Cerebrovascular/fisiopatología , Animales , Animales Recién Nacidos , Autorradiografía , Velocidad del Flujo Sanguíneo/fisiología , Arteria Carótida Interna/diagnóstico por imagen , Arteria Carótida Interna/crecimiento & desarrollo , Modelos Animales de Enfermedad , Flujometría por Láser-Doppler , Imagen por Resonancia Magnética , Microvasos/diagnóstico por imagen , Microvasos/crecimiento & desarrollo , Arteria Cerebral Media/diagnóstico por imagen , Arteria Cerebral Media/crecimiento & desarrollo , Mitocondrias/metabolismo , Consumo de Oxígeno/fisiología , Radiografía , Ratas , Ratas Wistar , Daño por Reperfusión/diagnóstico por imagen , Daño por Reperfusión/metabolismo , Análisis Espacio-Temporal , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/metabolismo , Ultrasonografía
13.
Antioxid Redox Signal ; 18(1): 5-18, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22738191

RESUMEN

AIMS: Oxidative stress and mitochondrial dysfunction participate together in the development of heart failure (HF). mRNA levels of monoamine oxidase-A (MAO-A), a mitochondrial enzyme that produces hydrogen peroxide (H(2)O(2)), increase in several models of cardiomyopathies. Therefore, we hypothesized that an increase in cardiac MAO-A could cause oxidative stress and mitochondrial damage, leading to cardiac dysfunction. In the present study, we evaluated the consequences of cardiac MAO-A augmentation on chronic oxidative damage, cardiomyocyte survival, and heart function, and identified the intracellular pathways involved. RESULTS: We generated transgenic (Tg) mice with cardiac-specific MAO-A overexpression. Tg mice displayed cardiac MAO-A activity levels similar to those found in HF and aging. As expected, Tg mice showed a significant decrease in the cardiac amounts of the MAO-A substrates serotonin and norepinephrine. This was associated with enhanced H(2)O(2) generation in situ and mitochondrial DNA oxidation. As a consequence, MAO-A Tg mice demonstrated progressive loss of cardiomyocytes by necrosis and ventricular failure, which were prevented by chronic treatment with the MAO-A inhibitor clorgyline and the antioxidant N-acetyl-cystein. Interestingly, Tg hearts exhibited p53 accumulation and downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial function. This was concomitant with cardiac mitochondrial ultrastructural defects and ATP depletion. In vitro, MAO-A adenovirus transduction of neonatal cardiomyocytes mimicked the results in MAO-A Tg mice, triggering oxidative stress-dependent p53 activation, leading to PGC-1α downregulation, mitochondrial impairment, and cardiomyocyte necrosis. INNOVATION AND CONCLUSION: We provide the first evidence that MAO-A upregulation in the heart causes oxidative mitochondrial damage, p53-dependent repression of PGC-1α, cardiomyocyte necrosis, and chronic ventricular dysfunction.


Asunto(s)
Mitocondrias Cardíacas/enzimología , Monoaminooxidasa/metabolismo , Miocitos Cardíacos/patología , Necrosis/enzimología , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Disfunción Ventricular Izquierda/enzimología , Animales , Cardiomiopatía Dilatada/enzimología , Células Cultivadas , Enfermedad Crónica , Inducción Enzimática , Fibrosis , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/patología , Hipertrofia Ventricular Izquierda/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monoaminooxidasa/genética , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas , Ratas Sprague-Dawley , Factores de Transcripción , Regulación hacia Arriba , Disfunción Ventricular Izquierda/patología
14.
J Mol Cell Cardiol ; 56: 55-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23238221

RESUMEN

Reperfusion of the heart after an ischemic event leads to the opening of a nonspecific pore in the inner mitochondrial membrane, the mitochondrial permeability transition pore (mPTP). Inhibition of mPTP opening is an effective strategy to prevent cardiomyocyte death. The matrix protein cyclophilin-D (CypD) is the best-known regulator of mPTP opening. In this study we confirmed that preconditioning and postconditioning with CypD inhibitor cyclosporin-A (CsA) reduced cell death after hypoxia-reoxygenation (H/R) in wild-type (WT) cardiomyocytes and HL-1 mouse cardiac cell line as measured by nuclear staining with propidium iodide. The complex I inhibitor rotenone (Rot), alone, had no effect on HL-1 and WT cardiomyocyte death after H/R, but enhanced the native protection of CypD-knocked-out (CypD KO) cardiomyocytes. Reduction of cell death was associated with a delay of mPTP opening challenged by H/R and observed by the calcein loading CoCl(2)-quenching technique. Simultaneous inhibition of complex I and CypD increased in a synergistic manner the calcium retention capacity in permeabilized cardiomyocytes and cardiac mitochondria. These results demonstrated that protection by complex I inhibition was CypD dependent.


Asunto(s)
Cardiotónicos/farmacología , Ciclosporina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Rotenona/farmacología , Animales , Muerte Celular , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Peptidil-Prolil Isomerasa F , Ciclofilinas/antagonistas & inhibidores , Ciclofilinas/genética , Ciclofilinas/metabolismo , Sinergismo Farmacológico , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Consumo de Oxígeno , Permeabilidad
15.
Stroke ; 43(11): 3078-84, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22949477

RESUMEN

BACKGROUND AND PURPOSE: We recently demonstrated that endogenous nitric oxide (NO) modulates collateral blood flow in a neonatal stroke model in rats. The inhalation of NO (iNO) has been found to be neuroprotective after ischemic brain damage in adults. Our objective was to examine whether iNO could modify cerebral blood flow during ischemia-reperfusion and reduce lesions in the developing brain. METHODS: In vivo variations in cortical NO concentrations occurring after 20-ppm iNO exposure were analyzed using the voltammetric method in P7 rat pups. Inhaled NO-mediated blood flow velocities were measured by ultrasound imaging with sequential Doppler recordings in both internal carotid arteries and the basilar trunk under basal conditions and in a neonatal model of ischemia-reperfusion. The hemodynamic effects of iNO (5 to 80 ppm) were correlated with brain injury 48 hours after reperfusion. RESULTS: Inhaled NO (20 ppm) significantly increased NO concentrations in the P7 rat cortex and compensated for the blockade of endogenous NO synthesis under normal conditions. Inhaled NO (20 ppm) during ischemia increased blood flow velocities and significantly reduced lesion volumes by 43% and cellular damage. In contrast, both 80 ppm iNO given during ischemia and 5 or 20 ppm iNO given 30 minutes after reperfusion were detrimental. CONCLUSIONS: Our findings strongly indicate that, with the appropriate timing, 20 ppm iNO can be transported into the P7 rat brain and mediated blood flow redistribution during ischemia leading to reduced infarct volume and cell injury.


Asunto(s)
Circulación Cerebrovascular/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Óxido Nítrico/administración & dosificación , Accidente Cerebrovascular/patología , Administración por Inhalación , Animales , Animales Recién Nacidos , Lesiones Encefálicas/patología , Circulación Colateral/efectos de los fármacos , Modelos Animales de Enfermedad , Hemodinámica/efectos de los fármacos , Ratas , Ratas Wistar
16.
Biochim Biophys Acta ; 1817(9): 1628-34, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22659400

RESUMEN

Inhibition of the mitochondrial permeability transition pore (PTP) has proved to be an effective strategy for preventing oxidative stress-induced cell death, and the pore represents a viable cellular target for drugs. Here, we report that inhibition of complex I by rotenone is more effective at PTP inhibition than cyclosporin A in tissues that express low levels of the cyclosporin A mitochondrial target, cyclophilin D; and, conversely, that tissues in which rotenone does not affect the PTP are characterized by high levels of expression of cyclophilin D and sensitivity to cyclosporin A. Consistent with a regulatory role of complex I in the PTP-inhibiting effects of rotenone, the concentrations of the latter required for PTP inhibition precisely match those required to inhibit respiration; and a similar effect is seen with the antidiabetic drug metformin, which partially inhibits complex I. Remarkably (i) genetic ablation of cyclophilin D or its displacement with cyclosporin A restored PTP inhibition by rotenone in tissues that are otherwise resistant to its effects; and (ii) rotenone did not inhibit the PTP unless phosphate was present, in striking analogy with the phosphate requirement for the inhibitory effects of cyclosporin A [Basso et al. (2008) J. Biol. Chem. 283, 26307-26311]. These results indicate that inhibition of complex I by rotenone or metformin and displacement of cyclophilin D by cyclosporin A affect the PTP through a common mechanism; and that cells can modulate their PTP response to complex I inhibition by modifying the expression of cyclophilin D, a finding that has major implications for pore modulation in vivo.


Asunto(s)
Ciclofilinas/fisiología , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Rotenona/farmacología , Animales , Peptidil-Prolil Isomerasa F , Ciclosporina/farmacología , Complejo I de Transporte de Electrón/fisiología , Humanos , Metformina/farmacología , Ratones , Poro de Transición de la Permeabilidad Mitocondrial
17.
J Mol Cell Cardiol ; 52(5): 1091-5, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22387164

RESUMEN

Coenzyme Q(2) (CoQ(2)) is known to inhibit mitochondrial permeability transition pore (mPTP) opening in isolated rat liver mitochondria. In this study, we investigated and compared the effects of CoQ(2) on mPTP opening and ROS production in isolated rabbit heart and rat liver mitochondria. Mitochondria were isolated from New Zealand White rabbit hearts and Wistar rat livers. Oxygen consumption, Ca(2+)-induced mPTP opening, ROS production and NADH DUb-reductase activity were measured. Rotenone was used to investigate the effect of CoQ(2) on respiratory complex I activity. CoQ(2) (23 µM) reduced the respiratory control index by 32% and 57% (p<0.01) in heart and liver mitochondria respectively, mainly through an increased oxygen consumption in state 4. CoQ(2) induced a 60% (p<0.05) decrease of calcium retention capacity (CRC) in heart mitochondria and inversely a 46% (p<0.05) increase in liver mitochondria. In basal condition, CoQ(2) induced a 170% (p<0.05) increase of H(2)O(2) production in heart mitochondria and 21% (ns) decrease of H(2)O(2) production in liver mitochondria. Because rotenone, a complex I inhibitor, increases H(2)O(2) production in heart but not in liver mitochondria we investigated the CoQ(2) effect in a dose-response assay of complex I inhibition by rotenone in both mitochondria. CoQ(2) antagonized the effect of rotenone on respiratory complex I activity in liver but not in heart mitochondria. CoQ(2) significantly reduced NADH DUb-reductase activity in liver (-47%) and heart (-37%) mitochondria. In conclusion, our data showed that on the contrary to what was observed in liver mitochondria, CoQ(2) favors mPTP opening and ROS production in heart mitochondria through an opposite effect on respiratory complex I activity.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ubiquinona/fisiología , Animales , Calcio/metabolismo , Masculino , Poro de Transición de la Permeabilidad Mitocondrial , Fosforilación Oxidativa , Consumo de Oxígeno , Conejos , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Ácido Succínico/metabolismo , Desacopladores/farmacología
18.
Exp Neurol ; 230(1): 58-66, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20599982

RESUMEN

The effects of ischemia-reperfusion on opening of the mitochondrial permeability transition pore (mPTP) and its blockade in the immature brain are not fully understood. Presently, we evaluated the effect of cyclosporine A (CsA) on cell death and mPTP opening in a model of transient focal ischemia induced by permanent left middle cerebral artery, and homolateral transient common carotid artery occlusion (50 min) in P7 rats. CsA (10mg/kg) was administered 14 h before induction of ischemia and effects were analyzed at 30-40 min and 48 h after reperfusion. CsA administration reduced infarct size, DNA fragmentation and apoptotic bodies, and inflammatory responses in mild but not severe injury. CsA increased the Ca(2+) load required to open the mPTP (78.4 ± 19.2 vs. 50.2 ± 19.9 nmol.mg(-)(1) protein, p < 0.05) in limiting the decoupling of the respiratory chain by unchanged state 3 but reduced state 4, and attenuated early calpain-mediated alpha-spectrin proteolysis. In conclusion, CsA mediates inhibition of mPTP opening and has a tendency to protect immature rat brain against mild ischemic injury. This article is part of a Special Issue entitled "Interaction between repair, disease, & inflammation."


Asunto(s)
Encéfalo/patología , Ciclosporina/uso terapéutico , Inmunosupresores/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/ultraestructura , Infarto Encefálico/diagnóstico por imagen , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/etiología , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Lateralidad Funcional , Proteína Ácida Fibrilar de la Glía/metabolismo , Etiquetado Corte-Fin in Situ , Infarto de la Arteria Cerebral Media/complicaciones , Mastocitos/patología , Microscopía Electrónica de Transmisión/métodos , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar , Flujo Sanguíneo Regional , Espectrina/metabolismo , Ultrasonografía Doppler/métodos
19.
BMC Neurosci ; 7: 81, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17184520

RESUMEN

BACKGROUND: Nitric oxide (NO) is a multifunctional molecule synthesized by three isozymes of the NO synthase (NOSs) acting as a messenger/modulator and/or a potential neurotoxin. In rodents, the role of NOSs in sleep processes and throughout aging is now well established. For example, sleep parameters are highly deteriorated in senescence accelerated-prone 8 (SAMP8) mice, a useful animal model to study aging or age-associated disorders, while the inducible form of NOS (iNOS) is down-regulated within the cortex and the sleep-structures of the brainstem. Evidence is now increasing for a role of iNOS and resulting oxidative stress but not for the constitutive expressed isozyme (nNOS). To better understand the role of nNOS in the behavioural impairments observed in SAMP8 versus SAMR1 (control) animals, we evaluated age-related variations occurring in the nNOS expression and activity and nitrites/nitrates (NOx-) levels, in three brain areas (n = 7 animals in each group). Calibrated reverse transcriptase (RT) and real-time polymerase chain reaction (PCR) and biochemical procedures were used. RESULTS: We found that the levels of nNOS mRNA decreased in the cortex and the hippocampus of 8- vs 2-month-old animals followed by an increase in 12-vs 8-month-old animals in both strains. In the brainstem, levels of nNOS mRNA decreased in an age-dependent manner in SAMP8, but not in SAMR1. Regional age-related changes were also observed in nNOS activity. Moreover, nNOS activity in hippocampus was found lower in 8-month-old SAMP8 than in SAMR1, while in the cortex and the brainstem, nNOS activities increased at 8 months and afterward decreased with age in SAMP8 and SAMR1. NOx- levels showed profiles similar to nNOS activities in the cortex and the brainstem but were undetectable in the hippocampus of SAMP8 and SAMR1. Finally, NOx- levels were higher in the cortex of 8 month-old SAMP8 than in age-matched SAMR1. CONCLUSION: Concomitant variations occurring in NO levels derived from nNOS and iNOS at an early age constitute a major factor of risk for sleep and/or memory impairments in SAMP8.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Óxido Nítrico Sintasa de Tipo I/biosíntesis , ARN Mensajero/biosíntesis , Factores de Edad , Envejecimiento/genética , Animales , Tronco Encefálico/metabolismo , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Mutantes , Óxido Nítrico Sintasa de Tipo I/genética , ARN Mensajero/genética
20.
Neurobiol Aging ; 26(10): 1375-84, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16243608

RESUMEN

Evidence that nitric oxide (NO) is involved in the regulation of rapid-eye-movement sleep (REMS) is supported by recent studies. During aging, NO generation encounters marked changes mainly related to the activation of the inducible NO-synthase (iNOS). To investigate links existing between iNOS and REMS impairments related to aging, we examine the age-related variations occurring in: mRNA and activity of iNOS in brainstem and frontal cortex; sleep parameters under baseline and after treatment by a selective iNOS inhibitor (AMT) in Senescence Accelerated Mice (SAM). SAMR1 (control) mice are a model of aging while SAMP8 are adequate to study neurodegenerative processes. RT-PCR analysis does not reveal significant variation in iNOS mRNA expression in both strains. However, significant age-related increases in iNOS activity occur in SAMR1 but such variation is not observed in SAMP8. In baseline conditions, aging induces a slight increase in slow-wave sleep (SWS) amounts in both groups and deteriorates greatly REMS architecture in SAMP8 compared to SAMR1. AMT reduces REMS amounts for 4-6h after treatment in a dose and age-dependent manner in SAMR1. Almost no changes occur in SAMP8. Data reported suggest that NO derived from iNOS contributes to trigger and maintain REMS during aging.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Óxido Nítrico Sintasa de Tipo II/fisiología , Sueño REM/fisiología , Factores de Edad , Envejecimiento/genética , Análisis de Varianza , Animales , Encéfalo/anatomía & histología , Relación Dosis-Respuesta a Droga , Electroencefalografía , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos , Modelos Animales , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Fases del Sueño/genética , Fases del Sueño/fisiología , Cloruro de Sodio/farmacología , Factores de Tiempo , Triazoles/farmacología , Vigilia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA