Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Open Vet J ; 14(1): 360-369, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633184

RESUMEN

Background: The usage of commercial probiotic products as alternatives to traditional antibiotics in fish culture is initiated to be a potential factor for Nile tilapia fish's welfare and growth. Aim: The purpose of the current study is to show the influence of commercial probiotics (Bacillus amyloliquefaciens) dietary supplementation at different levels on Nile tilapia welfare and growth. Methods: Apparently healthy fingerlings of Nile Tilapia with a total number of 120 with an average initial weight (26.2 ± 0.3 g) were distributed into four groups (each group had 30 fingerlings). The first group (G1) was given a basal diet without additional probiotics, while other groups [second group (G2), the third group (G3), and the fourth group (G4)] were given basal diets supplemented with different levels of commercial probiotics (1 g, 2 g, and 3 g of probiotics per kilogram of diet), respectively (15 fish in each sub group as replicate), in eight glass aquaria (30 × 40 × 100 cm) for 2 months as an experimental period. Results: The results revealed that the probiotic-treated groups especially G4 (3 g probiotics/kg diet) showed a marked increase in the following behavioral patterns such as feeding and swimming behaviors, while G2 (1 g probiotic/kg diet) had an increase in the foraging behavior compared with G1 control group. While surfacing, body care, and aggressive behaviors with all patterns were the highest in the control group (G1) than all probiotics-treated groups. The crossing test showed that fish rose in the probiotic-treated groups (G3 and G4) were more active and could achieve the highest growth rates. While water quality was better in G4 (3 g probiotic /kg diet) than in other groups. Moreover, G4 (3 g probiotic/kg diet) showed a marked increase in all serum biochemical parameters than the control group (G1). Conclusion: The current study proved that the best level of commercial probiotics (B. amyloliquefaciens) was (3 g probiotic/kg diet) for achieving optimal Nile tilapia fingerlings' growth performance under these experimental conditions. Finally, this work confirms the significance of the addition of probiotics as a feed additive to enhance both growth performance and immunity response, improve water quality, and achieve the welfare of Nile tilapia fingerlings.


Asunto(s)
Cíclidos , Probióticos , Animales , Alimentación Animal/análisis , Suplementos Dietéticos , Dieta
2.
Aquac Nutr ; 2023: 6700708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303607

RESUMEN

Despite the usage of nanoparticles (NPs) is rapidly increasing, several experts have noted the risk of their release into ecosystems and their potential negative impacts on biological systems. However, the available studies on the neurobehavioral impacts of aluminum oxide nanoparticles (Al2O3NPs) on aquatic organisms are little. Hence, this study targeted to ascertain the harmful effects of Al2O3NPs on behavioral characteristics and genotoxic and oxidative damages in Nile tilapia fish. In addition, the beneficial role of chamomile essential oil (CEO) supplementation in reducing these effects was also investigated. In the current study, fish were distributed into 4 equal groups (n = 60 fish per group). The control group was fed a plain diet only, the CEO group received a basic diet complemented with CEO at a level of 2 mg/kg diet, the ALNP group received a basic diet and was exposed to an approximate concentration of 1/10th LC50 of ALNPs nearly 5.08 mg/L, and the combination group (ALNPs/CEO group) received a basal diet coadministered with ALNPs and CEO at the aforementioned percentages. The findings revealed that O. niloticus exhibit neurobehavioral changes along with changes in the level of GABA, monoamines in the brain tissue, and serum amino acid neurotransmitters, besides a reduction of AChE and Na+/K+-ATPase activities. In addition to brain tissue oxidative damage with upregulation of proinflammatory and stress genes, such as HSP70 and caspase-3, supplementation of CEO significantly reduced the negative impacts of ALNPs. These results showed that CEO has neuroprotective, antioxidant, genoprotective, anti-inflammatory, and antiapoptotic properties in fish that have been exposed to ALNPs. Therefore, we advise its usage as a valuable addition to fish diet.

3.
Toxics ; 11(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37235246

RESUMEN

Herein, male juvenile rats (23th postnatal days (PND)) were exposed to chlorpyrifos (CPS) (7.5 mg/kg b.wt) and/or iprodione (IPD) (200 mg IPD /kg b.wt) until the onset of puberty (60th day PND). Our results demonstrated that IPD and/or CPS exposure considerably reduced locomotion and exploration. However, CPS single exposure induced anxiolytic effects. Yet, neither IPD nor IPD + CPS exposure significantly affected the anxiety index. Of note, IPD and/or CPS-exposed rats showed reduced swimming time. Moreover, IPD induced significant depression. Nonetheless, the CPS- and IPD + CPS-exposed rats showed reduced depression. The individual or concurrent IPD and CPS exposure significantly reduced TAC, NE, and AChE but increased MDA with the maximum alteration at the co-exposure. Moreover, many notable structural encephalopathic alterations were detected in IPD and/or CPS-exposed rat brain tissues. The IPD + CPS co-exposed rats revealed significantly more severe lesions with higher frequencies than the IPD or CPS-exposed ones. Conclusively, IPD exposure induced evident neurobehavioral alterations and toxic reactions in the brain tissues. IPD and CPS have different neurobehavioral effects, particularly regarding depression and anxiety. Hence, co-exposure to IPD and CPS resulted in fewer neurobehavioral aberrations relative to each exposure. Nevertheless, their simultaneous exposure resulted in more brain biochemistry and histological architecture disturbances.

4.
Environ Sci Pollut Res Int ; 28(40): 56491-56506, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34060014

RESUMEN

There is cumulative evidence that iprodione (IPR) fungicide and chlorpyrifos (CPF) insecticide are endocrine disruptors that can evoke reproductive toxicity. Yet, the underlying mechanisms are still unclear. Besides, the outcomes of their co-exposure to male sexual behavior and male fertility are still unknown. The effects of IPR (200 mg/kg b.wt) and CPF (7.45 mg/kg b.wt) single or mutual exposure for 65 days on sexual behavior, sex hormones, testicular enzymes, testis, and accessory sex gland histomorphometric measurements, apoptosis, and oxidative stress biomarkers were investigated. In addition, expression of nuclear receptor subfamily group A (NR5A1), 17ß-hydroxysteroid dehydrogenase (HSD17B3), silent information regulator type-1 (SIRT1), telomerase reverse transcriptase (TERT), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) genes has been assessed. Our results revealed that the individual or concurrent IPR and CPF exposure significantly disturb the sexual behavior, semen characteristics, testicular enzymes, and male hormones level. Oxidative stress caused by IPR and CPF activates apoptosis by inducing Caspase-3 and reducing Bcl-2. Downregulation of HSD17B3, NR5A1, and SIRT1/TERT/PGC-1α pathway was evident. Of note, most of these disturbances were exaggerated in rats co-exposed to IPR and CPF compared to IPR or CPF alone. Conclusively, our findings verified that IPR and CPF possibly damage the male reproductive system, and concurrent exposure should be avoided.


Asunto(s)
Cloropirifos , Aminoimidazol Carboxamida/análogos & derivados , Animales , Cloropirifos/metabolismo , Cloropirifos/toxicidad , Hidantoínas , Masculino , Estrés Oxidativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratas , Sirtuina 1/metabolismo , Testículo/metabolismo
5.
BMC Vet Res ; 17(1): 68, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541348

RESUMEN

BACKGROUND: The effects of safflower oil and vitamin C (Vit. C) inclusion in broiler chicken diets on the growth performance, apparent ileal digestibility coefficient "AID%" of amino acids, intestinal histology, behavior, carcass traits, fatty acid composition of the breast muscle, antioxidant and immune status for a 35-day feeding period were evaluated. A total of 300 three-day-old Ross chicks (58.25 g ± 0.19) were randomly allotted in a 2 × 3 factorial design consisting of two levels of vitamin C (0 and 400 mg/kg diet) and three levels of safflower oil (0, 5, and 10 g/kg diet). RESULTS: An increase in the final body weight, total body weight gain, total feed intake, and the relative growth rate (P <  0.05) were reported by safflower oil and vitamin C inclusion. Dietary supplementation of safflower oil and vitamin C had a positive effect (P <  0.05) on the ingestive, resting, and feather preening behavior. Vitamin C supplementation increased (P <  0.05) the AID% of lysine, threonine, tryptophan, arginine, and valine. Safflower inclusion (10 g/kg) increased (P <  0.05) the AID% of methionine and isoleucine. Safflower oil inclusion increased (P <  0.05) the levels of stearic acid, linoleic acid, saturated fatty acids, and omega-3 fatty acids (ω-3) in the breast muscle. In contrast, the supplementation of only 10 g of safflower oil/kg diet increased (P = 0.01) the omega-3/omega-6 (ω-3/ω-6) fatty acids ratio. Vit. C supplementation increased (P <  0.05) the CAT serum levels, SOD, and GSH enzymes. Dietary supplementation of safflower oil and vitamin C improved the intestinal histology. They increased the villous height and width, crypt depth, villous height/crypt depth ratio, mucosal thickness, goblet cell count, and intra-epithelium lymphocytic lick cell infiltrations. The serum levels of IgA and complement C3 were increased (P <  0.01) by Vit. C supplementation and prominent in the 400 vit. C +  10 safflower Oil group. CONCLUSION: A dietary combination of safflower oil and vitamin C resulted in improved growth rate, amino acids AID%, intestinal histology, welfare, immune and antioxidant status of birds, and obtaining ω-3 and linoleic acid-enriched breast muscles. The best inclusion level was 400 vit. C +  10 safflower Oil.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Ácido Ascórbico/administración & dosificación , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Aceite de Cártamo/administración & dosificación , Alimentación Animal/análisis , Animales , Conducta Animal/fisiología , Pollos/sangre , Pollos/fisiología , Ácidos Grasos/análisis , Intestinos/anatomía & histología , Intestinos/efectos de los fármacos , Intestinos/fisiología , Músculo Esquelético/química
6.
Front Vet Sci ; 7: 582612, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282930

RESUMEN

The effect of phenolic-rich onion extract (PROE), as a feed additive, was evaluated on the growth, carcass traits, behavior, welfare, intestinal histology, amino acid ileal digestibility "AID%," and the immune status of broiler chicks for 35 days. A total number of 400, 1-day-old broiler chicks (45.38 g ± 1.35) were allocated to four different treatments with 10 replicates each (100 chicks/treatment) consisting of: T1, basal diet without additives (control treatment) (PROE0); T2, basal diet + phenolic-rich onion extract (1 g/kg diet) (PROE1); T3, basal diet + phenolic-rich onion extract (2 g/kg diet) (PROE2); and T4, basal diet + phenolic-rich onion extract (3 g/kg diet) (PROE3). An increase in the final body weight "FBW," bodyweight gain "BWG," and feed consumption was observed (P < 0.05) at different PROE levels. Also, the thymus and bursa percentages were increased in the PROE2 and PROE3 treatments (P < 0.05). The chicks fed on PROE supplemented diets had increased frequency of feeding and drinking and showed comfortable behavior (P < 0.05) with lesser aggression (P < 0.05). Additionally, an increase was observed in the antioxidant enzyme activity, phagocytic %, phagocytic index, and serum lysozyme activity in PROE supplemented treatments, with the best outcome reported in the PROE3 treatment (P < 0.01). IgM was increased in the birds fed with PROE2 and PROE3 diets (P < 0.01). PROE supplementation increased the AID% of lysine and methionine (P <0.01), PROE3 treatment increased the AID% of threonine (P < 0.05), and PROE2 and PROE3 treatments increased the AID% of leucine and isoleucine (P < 0.05). Besides, PROE2, and PROE3 treatments increased the villus height and width, mucosal thickness, and goblet cell count from the duodena, jejuna, and ilea (P < 0.05) compared to control treatment. Based on these results, we concluded that the dietary addition of phenolic-rich onion extracts can improve the growth rate of broiler chicken by improving the AID% of amino acids and intestinal histology. Also, it can improve the welfare, antioxidant enzymes activity, and immune status of the birds. Phenolic-rich onion extracts can be used as a natural growth promoter in the poultry feed for good health and improved performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA