Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Biochem Biophys ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888872

RESUMEN

Exosomes from plants or animals are a cheap, available, and promising option in medicine, which can be used for the detection or treatment of various diseases. This study aims to evaluate the antitoxic and antioxidant properties of Extracellular vesicle (EVs) extracted from chicken embryo blood using a fibroblast cell line (NIH/3T3). EVs from chick embryos were extracted in this experimental investigation using the sedimentation method and examined using dynamic light scattering (DLS) and field emission electron microscopy (FE-SEM). The protein concentration and overall antioxidant capacity of the EVs were determined using bicinchoninic acid (BCA) and antioxidant capacity (FRAP). EVs were added to NIH/3T3 cells at varying concentrations (1, 2, and 10 mg/ml), and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay test was used to measure cell survival. The size of the isolated EVs was confirmed to be less than 100 nm by electron microscopy and DLS. The quantity of protein in these EVs was 3200 µg/ml, and their total antioxidant capacities were 3130.17, 1914.122, and 976.9 µMol/L. The MTT test findings demonstrated that NIH/3T3 cells survived treatment with EVs (P ≤ 0.001) compared to the control group. Antioxidant-rich and protein-rich exosomes in chicken embryos may be valuable in managing oxidative stress.

2.
J Transl Med ; 22(1): 520, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816723

RESUMEN

The intersection of nanotechnology and pharmacology has revolutionized the delivery and efficacy of chemotherapeutic agents, notably docetaxel, a key drug in cancer treatment. Traditionally limited by poor solubility and significant side effects, docetaxel's therapeutic potential has been significantly enhanced through its incorporation into nanoplatforms, such as nanofibers and nanoparticles. This advancement offers targeted delivery, controlled release, and improved bioavailability, dramatically reducing systemic toxicity and enhancing patient outcomes. Nanofibers provide a versatile scaffold for the controlled release of docetaxel, utilizing techniques like electrospinning to tailor drug release profiles. Nanoparticles, on the other hand, enable precise drug delivery to tumor cells, minimizing damage to healthy tissues through sophisticated encapsulation methods such as nanoprecipitation and emulsion. These nanotechnologies not only improve the pharmacokinetic properties of docetaxel but also open new avenues in regenerative medicine by facilitating targeted therapy and cellular regeneration. This narrative review highlights the transformative impact of docetaxel-loaded nanoplatforms in oncology and beyond, showcasing the potential of nanotechnology to overcome the limitations of traditional chemotherapy and pave the way for future innovations in drug delivery and regenerative therapies. Through these advancements, nanotechnology promises a new era of precision medicine, enhancing the efficacy of cancer treatments while minimizing adverse effects.


Asunto(s)
Docetaxel , Neoplasias , Medicina Regenerativa , Humanos , Docetaxel/farmacología , Docetaxel/uso terapéutico , Docetaxel/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Nanopartículas/química , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Resultado del Tratamiento , Sistemas de Liberación de Medicamentos
3.
Int J Biol Macromol ; 266(Pt 1): 130995, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521323

RESUMEN

Critical-size bone defects are one of the main challenges in bone tissue regeneration that determines the need to use angiogenic and osteogenic agents. Rosuvastatin (RSV) is a class of cholesterol-lowering drugs with osteogenic potential. Magnesium oxide (MgO) is an angiogenesis component affecting apatite formation. This study aims to evaluate 3D-printed Polycaprolactone/ß-tricalcium phosphate/nano-hydroxyapatite/ MgO (PCL/ß-TCP/nHA/MgO) scaffolds as a carrier for MgO and RSV in bone regeneration. For this purpose, PCL/ß-TCP/nHA/MgO scaffolds were fabricated with a 3D-printing method and coated with gelatin and RSV. The biocompatibility and osteogenicity of scaffolds were examined with MTT, ALP, and Alizarin red staining. Finally, the scaffolds were implanted in a bone defect of rat's calvaria, and tissue regeneration was investigated after 3 months. Our results showed that the simultaneous presence of RSV and MgO improved biocompatibility, wettability, degradation rate, and ALP activity but decreased mechanical strength. PCL/ß-TCP/nHA/MgO/gelatin-RSV scaffolds produced sustained release of MgO and RSV within 30 days. CT images showed that PCL/ß-TCP/nHA/MgO/gelatin-RSV scaffolds filled approximately 86.83 + 4.9 % of the defects within 3 months and improved angiogenesis, woven bone, and osteogenic genes expression. These results indicate the potential of PCL/ß-TCP/nHA/MgO/gelatin-RSV scaffolds as a promising tool for bone regeneration and clinical trials.


Asunto(s)
Regeneración Ósea , Gelatina , Óxido de Magnesio , Osteogénesis , Impresión Tridimensional , Rosuvastatina Cálcica , Andamios del Tejido , Regeneración Ósea/efectos de los fármacos , Rosuvastatina Cálcica/farmacología , Rosuvastatina Cálcica/química , Andamios del Tejido/química , Gelatina/química , Animales , Ratas , Osteogénesis/efectos de los fármacos , Óxido de Magnesio/química , Óxido de Magnesio/farmacología , Poliésteres/química , Liberación de Fármacos , Durapatita/química , Durapatita/farmacología , Preparaciones de Acción Retardada/farmacología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Cráneo/efectos de los fármacos , Ingeniería de Tejidos/métodos
4.
J Biol Eng ; 18(1): 14, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317174

RESUMEN

Bone metastasis is considered as a considerable challenge for breast cancer patients. Various in vitro and in vivo models have been developed to examine this occurrence. In vitro models are employed to simulate the intricate tumor microenvironment, investigate the interplay between cells and their adjacent microenvironment, and evaluate the effectiveness of therapeutic interventions for tumors. The endeavor to replicate the latency period of bone metastasis in animal models has presented a challenge, primarily due to the necessity of primary tumor removal and the presence of multiple potential metastatic sites.The utilization of novel bone metastasis models, including three-dimensional (3D) models, has been proposed as a promising approach to overcome the constraints associated with conventional 2D and animal models. However, existing 3D models are limited by various factors, such as irregular cellular proliferation, autofluorescence, and changes in genetic and epigenetic expression. The imperative for the advancement of future applications of 3D models lies in their standardization and automation. The utilization of artificial intelligence exhibits the capability to predict cellular behavior through the examination of substrate materials' chemical composition, geometry, and mechanical performance. The implementation of these algorithms possesses the capability to predict the progression and proliferation of cancer. This paper reviewed the mechanisms of bone metastasis following primary breast cancer. Current models of breast cancer bone metastasis, along with their challenges, as well as the future perspectives of using these models for translational drug development, were discussed.

5.
Cell J ; 26(1): 70-80, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38351731

RESUMEN

OBJECTIVE: Rosuvastatin (RSV) is a hydrophilic, effective statin with a long half-life that stimulates bone regeneration. The present study aims to develop a new scaffold and controlled release system for RSV with favourable properties for bone tissue engineering (BTE). MATERIALS AND METHODS: In this experimental study, high porous polycaprolactone (PCL)-gelatin scaffolds that contained different concentrations of RSV (0 mg/10 ml, 0.1 mg/10 ml, 0.5 mg/10 ml, 2.5 mg/10 ml, 12.5 mg/10 ml, and 62.5 mg/10 ml) were fabricated by the thermally-induced phase separation (TIPS) method. Mechanical and biological properties of the scaffolds were evaluated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), compressive strength, porosity, MTT, alkaline phosphatase (ALP) activity, water contact angle, degradation rate, pH alteration, blood clotting index (BCI), and hemocompatibility. RESULTS: SEM analysis confirmed that the porous structure of the scaffolds contained interconnected pores. FTIR results showed that the RSV structure was maintained during the scaffold's fabrication. RSV (up to 62.5 mg/10 ml) increased compressive strength (16.342 ± 1.79 MPa), wettability (70.2), and degradation rate of the scaffolds. Scaffolds that contained 2.5 mg/10 ml RSV had the best effect on the human umbilical cord mesenchymal stem cell (HUC-MSCs) survival, hemocompatibility, and BCI. As a sustained release system, only 31.68 ± 0.1% of RSV was released from the PCL-Gelatin-2.5 mg/10 ml RSV scaffold over 30 days. In addition, the results of ALP activity showed that RSV increased the osteogenic differentiation potential of the scaffolds. CONCLUSION: PCL-Gelatin-2.5 mg/10 ml RSV scaffolds have favorable mechanical, physical, and osteogenic properties for bone tissue and provide a favorable release system for RSV. They can mentioned as a a promising strategy for bone regeneration that should be further assessed in animals and clinical studies.

6.
Biomed Pharmacother ; 166: 115301, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562236

RESUMEN

The utilization of growth factors in the process of tissue regeneration has garnered significant interest and has been the subject of extensive research. However, despite the fervent efforts invested in recent clinical trials, a considerable number of these studies have produced outcomes that are deemed unsatisfactory. It is noteworthy that the trials that have yielded the most satisfactory outcomes have exhibited a shared characteristic, namely, the existence of a mechanism for the regulated administration of growth factors. Despite the extensive exploration of drug delivery vehicles and their efficacy in delivering certain growth factors, the development of a reliable predictive approach for the delivery of delicate growth factors like Vascular Endothelial Growth Factor (VEGF) remains elusive. VEGF plays a crucial role in promoting angiogenesis; however, the administration of VEGF demands a meticulous approach as it necessitates precise localization and transportation to a specific target tissue. This process requires prolonged and sustained exposure to a low concentration of VEGF. Inaccurate administration of drugs, either through off-target effects or inadequate delivery, may heighten the risk of adverse reactions and potentially result in tumorigenesis. At present, there is a scarcity of technologies available for the accurate encapsulation of VEGF and its subsequent sustained and controlled release. The objective of this review is to present and assess diverse categories of VEGF administration mechanisms. This paper examines various systems, including polymeric, liposomal, hydrogel, inorganic, polyplexes, and microfluidic, and evaluates the appropriate dosage of VEGF for multiple applications.


Asunto(s)
Medicina Regenerativa , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Sistemas de Liberación de Medicamentos , Hidrogeles/farmacología , Neovascularización Fisiológica
7.
Front Bioeng Biotechnol ; 11: 1168504, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469447

RESUMEN

Population ageing and various diseases have increased the demand for bone grafts in recent decades. Bone tissue engineering (BTE) using a three-dimensional (3D) scaffold helps to create a suitable microenvironment for cell proliferation and regeneration of damaged tissues or organs. The 3D printing technique is a beneficial tool in BTE scaffold fabrication with appropriate features such as spatial control of microarchitecture and scaffold composition, high efficiency, and high precision. Various biomaterials could be used in BTE applications. PCL, as a thermoplastic and linear aliphatic polyester, is one of the most widely used polymers in bone scaffold fabrication. High biocompatibility, low cost, easy processing, non-carcinogenicity, low immunogenicity, and a slow degradation rate make this semi-crystalline polymer suitable for use in load-bearing bones. Combining PCL with other biomaterials, drugs, growth factors, and cells has improved its properties and helped heal bone lesions. The integration of PCL composites with the new 3D printing method has made it a promising approach for the effective treatment of bone injuries. The purpose of this review is give a comprehensive overview of the role of printed PCL composite scaffolds in bone repair and the path ahead to enter the clinic. This study will investigate the types of 3D printing methods for making PCL composites and the optimal compounds for making PCL composites to accelerate bone healing.

8.
J Biol Eng ; 17(1): 41, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386445

RESUMEN

Currently, breast carcinoma is the most common form of malignancy and the main cause of cancer mortality in women worldwide. The metastasis of cancer cells from the primary tumor site to other organs in the body, notably the lungs, bones, brain, and liver, is what causes breast cancer to ultimately be fatal. Brain metastases occur in as many as 30% of patients with advanced breast cancer, and the 1-year survival rate of these patients is around 20%. Many researchers have focused on brain metastasis, but due to its complexities, many aspects of this process are still relatively unclear. To develop and test novel therapies for this fatal condition, pre-clinical models are required that can mimic the biological processes involved in breast cancer brain metastasis (BCBM). The application of many breakthroughs in the area of tissue engineering has resulted in the development of scaffold or matrix-based culture methods that more accurately imitate the original extracellular matrix (ECM) of metastatic tumors. Furthermore, specific cell lines are now being used to create three-dimensional (3D) cultures that can be used to model metastasis. These 3D cultures satisfy the requirement for in vitro methodologies that allow for a more accurate investigation of the molecular pathways as well as a more in-depth examination of the effects of the medication being tested. In this review, we talk about the latest advances in modeling BCBM using cell lines, animals, and tissue engineering methods.

9.
Bioeng Transl Med ; 8(3): e10498, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206240

RESUMEN

Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.

10.
Biomed Pharmacother ; 153: 113431, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076549

RESUMEN

The ultimate goal of regenerative medicine is to repair, regenerate, or reconstruct functional loss in failed tissues and/or organs. Although regenerative medicine is a relatively new field, multiple diverse research groups are helping regenerative medicine reach its objectives. All endeavors in this field go through in silico, in vitro, in vivo, and clinical trials which are prerequisites to translating such approaches from the bench to the bedside. However, despite such promise, there are only a few regenerative medicine approaches that have actually entered commercialization due to extensive demands for the inclusion of multiple rules, principles, and finances, to reach the market. This review covers the commercialization of regenerative medicine, including its progress (or lack thereof), processes, regulatory concerns, and immunological considerations to name just a few key areas. Also, commercially available engineered tissues, including allografts, synthetic substitutes, and 3D bioprinting inks, along with commercially available cell and gene therapeutic products, are reviewed. Clinical applications and future perspectives are stated with a clear road map for improving the regenerative medicine field.


Asunto(s)
Bioimpresión , Medicina Regenerativa , Ingeniería de Tejidos
11.
Biomed Pharmacother ; 141: 111875, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34229250

RESUMEN

Cancer stands as one of the most leading causes of death worldwide, while one of the most significant challenges in treating it is revealing novel alternatives to predict, diagnose, and eradicate tumor cell growth. Although various methods, such as surgery, chemotherapy, and radiation therapy, are used today to treat cancer, its mortality rate is still high due to the numerous shortcomings of each approach. Regenerative medicine field, including tissue engineering, cell therapy, gene therapy, participate in cancer treatment and development of cancer models to improve the understanding of cancer biology. The final intention is to convey fundamental and laboratory research to effective clinical treatments, from the bench to the bedside. Proper interpretation of research attempts helps to lessen the burden of treatment and illness for patients. The purpose of this review is to investigate the role of regenerative medicine in accelerating and improving cancer treatment. This study examines the capabilities of regenerative medicine in providing novel cancer treatments and the effectiveness of these treatments to clarify this path as much as possible and promote advanced future research in this field.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Terapia Genética/tendencias , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Medicina Regenerativa/tendencias , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Terapia Genética/métodos , Humanos , Inmunoterapia Adoptiva/tendencias , Neoplasias/genética , Neoplasias/metabolismo , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/tendencias , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...