Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Structure ; 28(2): 185-195.e5, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31806352

RESUMEN

The nuclear pore complex (NPC) is embedded in the nuclear envelope and forms the main gateway to the nuclear interior including the inner nuclear membrane (INM). Two INM proteins in yeast are selectively imported. Their sorting signals consist of a nuclear localization signal, separated from the transmembrane domain by a long intrinsically disordered (ID) linker. We used computational models to predict the dynamic conformations of ID linkers and analyzed the INM targeting efficiency of proteins with linker regions with altered Stokes radii and decreased flexibilities. We find that flexibility, Stokes radius, and the frequency at which the linkers are at an extended end-to-end distance larger than 25 nm are good predictors for the targeting of the proteins. The data are consistent with a transport mechanism in which INM targeting of Heh2 is dependent on an ID linker that facilitates the crossing of the approximately 25-nm thick NPC scaffold.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Conformación Proteica , Dominios Proteicos , Señales de Clasificación de Proteína , Desplegamiento Proteico , Saccharomyces cerevisiae/genética
2.
Sci Adv ; 4(4): eaao7086, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29740608

RESUMEN

Adaptive hydrogels, often termed smart materials, are macromolecules whose structure adjusts to external stimuli. Responsive micro- and nanogels are particularly interesting because the small length scale enables very fast response times. Chemical cross-links provide topological constraints and define the three-dimensional structure of the microgels, whereas their porous structure permits fast mass transfer, enabling very rapid structural adaption of the microgel to the environment. The change of microgel structure involves a unique transition from a flexible, swollen finite-size macromolecular network, characterized by a fuzzy surface, to a colloidal particle with homogeneous density and a sharp surface. In this contribution, we determine, for the first time, the structural evolution during the microgel-to-particle transition. Time-resolved small-angle x-ray scattering experiments and computer simulations unambiguously reveal a two-stage process: In a first, very fast process, collapsed clusters form at the periphery, leading to an intermediate, hollowish core-shell structure that slowly transforms to a globule. This structural evolution is independent of the type of stimulus and thus applies to instantaneous transitions as in a temperature jump or to slower stimuli that rely on the uptake of active molecules from and/or exchange with the environment. The fast transitions of size and shape provide unique opportunities for various applications as, for example, in uptake and release, catalysis, or sensing.

3.
ACS Macro Lett ; 6(7): 721-725, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35650851

RESUMEN

The morphology of core-shell microgels under different swelling conditions and as a function of the core-shell thickness ratio is systematically characterized by mesoscale hydrodynamic simulations. With increasing hydrophobic interaction of the shell polymers, we observe drastic morphological changes from a core-shell structure to an inverted microgel, where the core is turned to the outside, or a microgel with a patchy surface of core polymers directly exposed to the environment. We establish a phase diagram of the various morphologies. Moreover, we characterize the polymer and microgel conformations. For sufficiently thick shells, the changes of the shell size upon increasing hydrophobic interactions are well described by the Flory-Rehner theory. Additionally, this theory provides a critical line in the phase diagram separating core-shell structures from the distinct two other phases. The appearing new phases provide a novel route to nano- and microscale functionalized materials.

4.
PLoS One ; 11(2): e0148876, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26894898

RESUMEN

Molecular transport across the nuclear envelope in eukaryotic cells is solely controlled by the nuclear pore complex (NPC). The NPC provides two types of nucleocytoplasmic transport: passive diffusion of small molecules and active chaperon-mediated translocation of large molecules. It has been shown that the interaction between intrinsically disordered proteins that line the central channel of the NPC and the transporting cargoes is the determining factor, but the exact mechanism of transport is yet unknown. Here, we use coarse-grained molecular dynamics simulations to quantify the energy barrier that has to be overcome for molecules to pass through the NPC. We focus on two aspects of transport. First, the passive transport of model cargo molecules with different sizes is studied and the size selectivity feature of the NPC is investigated. Our results show that the transport probability of cargoes is significantly reduced when they are larger than ∼5 nm in diameter. Secondly, we show that incorporating hydrophobic binding spots on the surface of the cargo effectively decreases the energy barrier of the pore. Finally, a simple transport model is proposed which characterizes the energy barrier of the NPC as a function of diameter and hydrophobicity of the transporting particles.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Modelos Biológicos , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Unión Proteica , Transducción de Señal
5.
J Chem Phys ; 145(24): 244902, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-28049314

RESUMEN

We analyze the dynamics of polymers in a microgel system under different swelling conditions. A microgel particle consists of coarse-grained linear polymers which are tetra-functionally crosslinked and undergoes conformational changes in response to the external stimuli. Here, a broad range of microgel sizes, extending from tightly collapsed to strongly swollen particles, is considered. In order to account for hydrodynamic interactions, the microgel is embedded in a multiparticle collision dynamics fluid while hydrophobic attraction is modelled by an attractive Lennard-Jones potential and swelling of ionic microgels is described through the Debye-Hückel potential. The polymer dynamics is analyzed in terms of the monomer mean square displacement and the intermediate scattering function S(q, t). The scattering function decays in a stretched-exponential manner, with a decay rate exhibiting a crossover from a collective diffusive dynamics at low magnitudes of the wavevector q to a hydrodynamic-dominated dynamics at larger q. There is little difference between the intermediate scattering functions of microgels under good solvent conditions and strongly swollen gels, but strongly collapsed gels exhibit a faster decay at short times and hydrodynamic interactions become screened. In addition, we present results for the dynamics of the crosslinks, which exhibit an unexpected, semiflexible polymer-like dynamics.

6.
PLoS One ; 10(12): e0143745, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26658558

RESUMEN

Nucleocytoplasmic transport has been the subject of a large body of research in the past few decades. Recently, the focus of investigations in this field has shifted from studies of the overall function of the nuclear pore complex (NPC) to the examination of the role of different domains of phenylalanine-glycine nucleoporin (FG Nup) sequences on the NPC function. In our recent bioinformatics study, we showed that FG Nups have some evolutionarily conserved sequence-based features that might govern their physical behavior inside the NPC. We proposed the 'like charge regions' (LCRs), sequences of charged residues with only one type of charge, as one of the features that play a significant role in the formation of FG network inside the central channel. In this study, we further explore the role of LCRs in the distribution of FG Nups, using a recently developed coarse-grained molecular dynamics model. Our results demonstrate how LCRs affect the formation of two transport pathways. While some FG Nups locate their FG network at the center of the NPC forming a homogeneous meshwork of FG repeats, other FG Nups cover the space adjacent to the NPC wall. LCRs in the former group, i.e. FG Nups that form an FG domain at the center, tend to regulate the size of the highly dense, doughnut-shaped FG meshwork and leave a small low FG density area at the center of the pore for passive diffusion. On the other hand, LCRs in the latter group of FG Nups enable them to maximize their interactions and cover a larger space inside the NPC to increase its capability to transport numerous cargos at the same time. Finally, a new viewpoint is proposed that reconciles different models for the nuclear pore selective barrier function.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Simulación de Dinámica Molecular , Proteínas de Complejo Poro Nuclear/química , Poro Nuclear/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Sustitución de Aminoácidos , Biología Computacional , Glicina/química , Glicina/metabolismo , Mutación , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Electricidad Estática
7.
Mol Biol Cell ; 26(7): 1386-94, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25631821

RESUMEN

Nuclear pore complexes (NPCs) allow selective import and export while forming a barrier for untargeted proteins. Using fluorescence microscopy, we measured in vivo the permeability of the Saccharomyces cerevisiae NPC for multidomain proteins of different sizes and found that soluble proteins of 150 kDa and membrane proteins with an extralumenal domain of 90 kDa were still partly localized in the nucleus on a time scale of hours. The NPCs thus form only a weak barrier for the majority of yeast proteins, given their monomeric size. Using FGΔ-mutant strains, we showed that specific combinations of Nups, especially with Nup100, but not the total mass of FG-nups per pore, were important for forming the barrier. Models of the disordered phase of wild-type and mutant NPCs were generated using a one bead per amino acid molecular dynamics model. The permeability measurements correlated with the density predictions from coarse-grained molecular dynamics simulations in the center of the NPC. The combined in vivo and computational approach provides a framework for elucidating the structural and functional properties of the permeability barrier of nuclear pore complexes.


Asunto(s)
Proteínas de la Membrana/metabolismo , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Difusión , Microscopía Fluorescente , Simulación de Dinámica Molecular , Transporte de Proteínas
8.
Biophys J ; 107(6): 1393-402, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25229147

RESUMEN

The distribution of disordered proteins (FG-nups) that line the transport channel of the nuclear pore complex (NPC) is investigated by means of coarse-grained molecular dynamics simulations. A one-bead-per-amino-acid model is presented that accounts for the hydrophobic/hydrophilic and electrostatic interactions between different amino acids, polarity of the solvent, and screening of free ions. The results indicate that the interaction of the FG-nups forms a high-density, doughnut-like distribution inside the NPC, which is rich in FG-repeats. We show that the obtained distribution is encoded in the amino-acid sequence of the FG-nups and is driven by both electrostatic and hydrophobic interactions. To explore the relation between structure and function, we have systematically removed different combinations of FG-nups from the pore to simulate inviable and viable NPCs that were previously studied experimentally. The obtained density distributions show that the maximum density of the FG-nups inside the pore does not exceed 185 mg/mL in the inviable NPCs, whereas for the wild-type and viable NPCs, this value increases to 300 mg/mL. Interestingly, this maximum density is not correlated to the total mass of the FG-nups, but depends sensitively on the specific combination of essential Nups located in the central plane of the NPC.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas de Complejo Poro Nuclear/química , Supervivencia Celular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Complejo Poro Nuclear/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Secuencias Repetitivas de Aminoácido , Electricidad Estática
9.
J Chem Theory Comput ; 9(1): 432-40, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26589045

RESUMEN

Recent studies have revealed the key role of natively unfolded proteins in many important biological processes. In order to study the conformational changes of these proteins, a one-bead-per-amino-acid coarse grained (CG) model is developed, and a method is proposed to extract the potential functions for the local interactions between CG beads. Experimentally obtained Ramachandran data for the coil regions of proteins are converted into distributions of pseudo-bond and pseudo-dihedral angles between neighboring alpha-carbons in the polypeptide chain. These are then used to derive bending and torsion potentials, which are residue and sequence specific. The validity of the developed model is testified by studying the radius of gyration as well as the hydrodynamic properties of chemically denatured proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA