Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Methods Mol Biol ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39331341

RESUMEN

Autophagy is a critical cellular process involved in the degradation and recycling of cytoplasmic components, playing a dual role in cancer by either promoting cell survival or facilitating cell death. In glioblastoma (GB), autophagy has been implicated in resistance to the chemotherapeutic agent temozolomide (TMZ). This study presents a novel method to accurately measure autophagy flux in TMZ-resistant glioblastoma cells, combining advanced imaging techniques with biochemical assays. By quantifying key autophagy markers such as LC3-II and SQSTM1, our approach provides detailed insights into the dynamic processes of autophagosome formation and clearance under therapeutic stress. This method advances our understanding of autophagy in GB chemoresistance and has significant implications for the development of autophagy-targeted therapies. The ability to monitor and manipulate autophagy flux in real time offers a promising avenue for monitoring and understanding TMZ resistance and improving patient outcomes in glioblastoma treatment.

2.
bioRxiv ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39253475

RESUMEN

Temozolomide (TMZ) resistance in glioblastoma (GB) poses a significant therapeutic challenge. We developed a TMZ-resistant (TMZ-R) U251 GB model, revealing distinct differences in cell viability, apoptosis, autophagy, and lipid metabolism between TMZ-R and non-resistant (TMZ-NR) cells. TMZ-NR cells exhibited heightened sensitivity to TMZ-induced apoptosis, while TMZ-R cells-maintained viability. Autophagy flux was completely inhibited in TMZ-R cells, indicated by LC3ßII and SQSTM1 accumulation. BCL2L13, which showed higher expression in TMZ-R cells, demonstrated increased interaction with Ceramide Synthase 6 (CerS6) and reduced interaction with Ceramide Synthase 2 (CerS2) in TMZ-NR cells. BCL2L13 knockdown (KD) disrupted autophagy flux, decreasing autophagosome accumulation in TMZ-R cells while increasing it in TMZ-NR cells. These changes contributed to altered ceramide profiles, where TMZ-R cells displayed elevated levels of Cer 16:0, 18:0, 20:0, 22:0, 24:0, and 24:1. Our findings highlight BCL2L13 and altered ceramide metabolism as potential therapeutic targets to overcome TMZ resistance in GB.

3.
Adv Exp Med Biol ; 1457: 1-31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39283418

RESUMEN

Coronavirus disease 2019 (COVID-19) has affected not only individual lives but also the world and global systems, both natural and human-made. Besides millions of deaths and environmental challenges, the rapid spread of the infection and its very high socioeconomic impact have affected healthcare, economic status and wealth, and mental health across the globe. To better appreciate the pandemic's influence, multidisciplinary and interdisciplinary approaches are needed. In this chapter, world-leading scientists from different backgrounds share collectively their views about the pandemic's footprint and discuss challenges that face the international community.


Asunto(s)
COVID-19 , Salud Global , Pandemias , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Salud Global/economía , Salud Global/estadística & datos numéricos , Pandemias/economía , Pandemias/prevención & control , Pandemias/estadística & datos numéricos
4.
Biochem Biophys Rep ; 39: 101752, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39286520
6.
Eur J Pharmacol ; 982: 176899, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39153651

RESUMEN

Colorectal cancer (CRC) ranks among the leading causes of cancer-related deaths worldwide. Enhancing CRC diagnosis and prognosis requires the development of improved biomarkers and therapeutic targets. Emerging evidence suggests that the unfolded protein response (UPR) plays a pivotal role in CRC progression, presenting new opportunities for diagnosis, treatment, and prevention. This study hypothesizes that genetic variants in endoplasmic reticulum (ER) stress response genes influence CRC susceptibility. We examined the frequencies of SNPs in PERK (rs13045) and GRP78/BiP (rs430397) within a South Iranian cohort. We mapped the cellular and molecular features of PERK and GRP78 genes in colorectal cancer, observing their differential expressions in tumor and metastatic tissues. We constructed co-expression and protein-protein interaction networks and performed gene set enrichment analysis, highlighting autophagy as a significant pathway through KEGG. Furthermore, the study included 64 CRC patients and 60 control subjects. DNA extraction and genotyping were conducted using high-resolution melting (HRM) analysis. Significant differences in PERK and GRP78 expressions were observed between CRC tissues and controls. Variations in PERK and GRP78 genotypes were significantly correlated with CRC risk. Utilizing a Multi-Target Directed Ligands approach, a dual PERK/GRP78 inhibitor was designed and subjected to molecular modeling studies. Docking experiments indicated high-affinity binding between the proposed inhibitor and both genes, PERK and GRP78, suggesting a novel therapy for CRC. These findings highlight the importance of understanding genetic backgrounds in different populations to assess CRC risk. Polymorphisms in UPR signaling pathway elements may serve as potential markers for predicting CRC susceptibility, paving the way for personalized therapeutic strategies.


Asunto(s)
Neoplasias Colorrectales , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico , Polimorfismo de Nucleótido Simple , eIF-2 Quinasa , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Masculino , Femenino , Proteínas de Choque Térmico/genética , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Terapia Molecular Dirigida , Anciano , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mapas de Interacción de Proteínas/genética
7.
FEBS J ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083441

RESUMEN

Transforming growth factor-ß (TGF-ß) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-ß's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-ß impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-ß's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-ß pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-ß. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-ß signaling in tumors and previous challenges, further research could yield innovative treatment strategies.

8.
bioRxiv ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38979364

RESUMEN

Macroautophagy/autophagy, a crucial cellular process, is typically measured using fluorescence-based techniques, which can be costly, complex, and impractical for clinical settings. In this paper, we introduce a novel, cost-effective, non-fluorescent immunohistochemistry (IHC) method for evaluating autophagy flux. This technique, based on antigen-antibody reactions and chromogenic detection, provides clear, quantifiable results under standard light microscopy, eliminating the need for expensive equipment and specialized reagents. Our method simplifies technical requirements, making it accessible to routine clinical laboratories and research settings with limited resources. By comparing our approach with traditional fluorescence methods, we demonstrate its superior effectiveness, cost-efficiency, and applicability to patient samples. This innovative technique has the potential to significantly advance autophagy research and improve clinical diagnostics, offering a practical and robust tool for studying autophagy mechanisms in diseases such as cancer and neurodegenerative disorders. Our non-fluorescent IHC method represents a significant step forward in evaluating autophagy flux, making it more accessible and reliable, with the promise of enhancing our understanding and treatment of autophagy-related diseases.

10.
Nanoscale ; 16(27): 12750-12792, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38899396

RESUMEN

Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools.


Asunto(s)
Técnicas Biosensibles , Biotina , Nanopartículas , Neoplasias , Humanos , Biotina/química , Neoplasias/diagnóstico , Técnicas Biosensibles/métodos , Nanopartículas/química , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/análisis , Técnicas Electroquímicas , Avidina/química , Animales
11.
Cancers (Basel) ; 16(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38893240

RESUMEN

Gliomas are primary brain lesions involving cerebral structures without well-defined boundaries and constitute the most prevalent central nervous system (CNS) neoplasms. Among gliomas, glioblastoma (GB) is a glioma of the highest grade and is associated with a grim prognosis. We examined how clinical variables and molecular profiles may have affected overall survival (OS) over the past ten years. A retrospective study was conducted at Sina Hospital in Tehran, Iran and examined patients with confirmed glioma diagnoses between 2012 and 2020. We evaluated the correlation between OS in GB patients and sociodemographic as well as clinical factors and molecular profiling based on IDH1, O-6-Methylguanine-DNA Methyltransferase (MGMT), TERTp, and epidermal growth factor receptor (EGFR) amplification (EGFR-amp) status. Kaplan-Meier and multivariate Cox regression models were used to assess patient survival. A total of 178 patients were enrolled in the study. The median OS was 20 months, with a 2-year survival rate of 61.0%. Among the 127 patients with available IDH measurements, 100 (78.7%) exhibited mutated IDH1 (IDH1-mut) tumors. Of the 127 patients with assessed MGMT promoter methylation (MGMTp-met), 89 (70.1%) had MGMT methylated tumors. Mutant TERTp (TERTp-mut) was detected in 20 out of 127 cases (15.7%), while wildtype TERTp (wildtype TERTp-wt) was observed in 107 cases (84.3%). Analyses using multivariable models revealed that age at histological grade (p < 0.0001), adjuvant radiotherapy (p < 0.018), IDH1 status (p < 0.043), and TERT-p status (p < 0.014) were independently associated with OS. Our study demonstrates that patients with higher tumor histological grades who had received adjuvant radiotherapy exhibited IDH1-mut or presented with TERTp-wt experienced improved OS. Besides, an interesting finding showed an association between methylation of MGMTp and TERTp status with tumor location.

12.
FEBS Open Bio ; 14(7): 1116-1132, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769074

RESUMEN

Alzheimer's disease (AD) is an increasingly important public health concern due to the increasing proportion of older individuals within the general population. The impairment of processes responsible for adequate brain energy supply primarily determines the early features of the aging process. Restricting brain energy supply results in brain hypometabolism prior to clinical symptoms and is anatomically and functionally associated with cognitive impairment. The present study investigated changes in metabolic profiles induced by intracerebroventricular-streptozotocin (ICV-STZ) in an AD-like animal model. To this end, male Wistar rats received a single injection of STZ (3 mg·kg-1) by ICV (2.5 µL into each ventricle for 5 min on each side). In the second week after receiving ICV-STZ, rats were tested for cognitive performance using the Morris Water Maze test and subsequently prepared for positron emission tomography (PET) to confirm AD-like symptoms. Tandem Mass Spectrometry (MS/MS) analysis was used to detect amino acid changes in cerebrospinal fluid (CFS) samples. Our metabolomics study revealed a reduction in the concentrations of various amino acids (alanine, arginine, aspartic acid, glutamic acid, glycine, isoleucine, methionine, phenylalanine, proline, serine, threonine, tryptophane, tyrosine, and valine) in CSF of ICV-STZ-treated animals as compared to controls rats. The results of the current study indicate amino acid levels could potentially be considered targets of nutritional and/or pharmacological interventions to interfere with AD progression.


Asunto(s)
Enfermedad de Alzheimer , Aminoácidos , Modelos Animales de Enfermedad , Metabolómica , Ratas Wistar , Estreptozocina , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/líquido cefalorraquídeo , Masculino , Ratas , Metabolómica/métodos , Aminoácidos/metabolismo , Aminoácidos/líquido cefalorraquídeo , Biología de Sistemas , Tomografía de Emisión de Positrones , Inyecciones Intraventriculares
13.
Methods Mol Biol ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38578576

RESUMEN

Microbial dysbiosis is an important trigger in the development of oral diseases. Oral keratinocytes or gingival epithelial cells (GECs) offer protection against various microbial insults. Recent studies suggest that GECs expressed higher level of bitter taste receptor 14 (T2R14) compared to other taste receptors and toll-like receptors and act as innate immune sentinels. Macroautophagy or autophagy is a cellular conserved process involved in the regulation of host innate immune responses against microbial infection. Here, we describe a robust method for evaluation of T2R14-dependent autophagy flux in GECs. Autophagy flux was detected using Western blot analysis in GECs and further was confirmed using Acridine Orange-dependent flow cytometry analysis.

15.
Methods Mol Biol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38647864

RESUMEN

Remodeling of the extracellular matrix (ECM) eventually causes the stiffening of tumors and changes to the microenvironment. The stiffening alters the biological processes in cancer cells due to altered signaling through cell surface receptors. Autophagy, a key catabolic process in normal and cancer cells, is thought to be involved in mechano-transduction and the level of autophagy is probably stiffness-dependent. Here, we provide a methodology to study the effect of matrix stiffness on autophagy in embryonal rhabdomyosarcoma cells. To mimic stiffness, we seeded cells on GelMA hydrogel matrices with defined stiffness and evaluated autophagy-related endpoints. We also evaluated autophagy-dependent pathways, apoptosis, and cell viability. Specifically, we utilized immunocytochemistry and confocal microscopy to track autophagosome formation through LC3 lipidation. This approach suggests that the use of GelMA hydrogels with defined stiffness represents a novel method to evaluate the role of autophagy in embryonal rhabdomyosarcoma and other cancer cells.

16.
Methods Mol Biol ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38607594

RESUMEN

Non-small cell lung cancer (NSCLC) is a predominant form of lung cancer characterized by its aggressive nature and high mortality rate, primarily due to late-stage diagnosis and metastatic spread. Recent studies underscore the pivotal role of mitophagy, a selective form of autophagy targeting damaged or superfluous mitochondria, in cancer biology, including NSCLC. Mitophagy regulation may influence cancer cell survival, proliferation, and metastasis by modulating mitochondrial quality and cellular energy homeostasis. Herein, we present a comprehensive methodology developed in our laboratory for the evaluation of mitophagy in NSCLC tumor cells. Utilizing a combination of immunoblotting, immunocytochemistry, and fluorescent microscopy, we detail the steps to quantify early and late mitophagy markers and mitochondrial dynamics. Our findings highlight the potential of targeting mitophagy pathways as a novel therapeutic strategy in NSCLC, offering insights into the complex interplay between mitochondrial dysfunction and tumor progression. This study not only sheds light on the significance of mitophagy in NSCLC but also establishes a foundational approach for its investigation, paving way for future research in this critical area of cancer biology.

17.
Expert Rev Proteomics ; 21(4): 125-147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38563427

RESUMEN

INTRODUCTION: Gene identification for genetic diseases is critical for the development of new diagnostic approaches and personalized treatment options. Prioritization of gene translation is an important consideration in the molecular biology field, allowing researchers to focus on the most promising candidates for further investigation. AREAS COVERED: In this paper, we discussed different approaches to prioritize genes for translation, including the use of computational tools and machine learning algorithms, as well as experimental techniques such as knockdown and overexpression studies. We also explored the potential biases and limitations of these approaches and proposed strategies to improve the accuracy and reliability of gene prioritization methods. Although numerous computational methods have been developed for this purpose, there is a need for computational methods that incorporate tissue-specific information to enable more accurate prioritization of candidate genes. Such methods should provide tissue-specific predictions, insights into underlying disease mechanisms, and more accurate prioritization of genes. EXPERT OPINION: Using advanced computational tools and machine learning algorithms to prioritize genes, we can identify potential targets for therapeutic intervention of complex diseases. This represents an up-and-coming method for drug development and personalized medicine.


Asunto(s)
Biología Computacional , Aprendizaje Automático , Humanos , Algoritmos , Biología Computacional/métodos , Medicina de Precisión/métodos , Biosíntesis de Proteínas/genética
18.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474036

RESUMEN

Alveolar rhabdomyosarcoma (ARMS), an invasive subtype of rhabdomyosarcoma (RMS), is associated with chromosomal translocation events resulting in one of two oncogenic fusion genes, PAX3-FOXO1 or PAX7-FOXO1. ARMS patients exhibit an overexpression of the pleiotropic cytokine transforming growth factor beta (TGF-ß). This overexpression of TGF-ß1 causes an increased expression of a downstream transcription factor called SNAIL, which promotes epithelial to mesenchymal transition (EMT). Overexpression of TGF-ß also inhibits myogenic differentiation, making ARMS patients highly resistant to chemotherapy. In this review, we first describe different types of RMS and then focus on ARMS and the impact of TGF-ß in this tumor type. We next highlight current chemotherapy strategies, including a combination of the FDA-approved drugs vincristine, actinomycin D, and cyclophosphamide (VAC); cabozantinib; bortezomib; vinorelbine; AZD 1775; and cisplatin. Lastly, we discuss chemotherapy agents that target the differentiation of tumor cells in ARMS, which include all-trans retinoic acid (ATRA) and 5-Azacytidine. Improving our understanding of the role of signaling pathways, such as TGF-ß1, in the development of ARMS tumor cells differentiation will help inform more tailored drug administration in the future.


Asunto(s)
Rabdomiosarcoma Alveolar , Rabdomiosarcoma , Humanos , Rabdomiosarcoma Alveolar/genética , Rabdomiosarcoma Alveolar/metabolismo , Rabdomiosarcoma Alveolar/patología , Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta1 , Factores de Transcripción Paired Box/genética , Transición Epitelial-Mesenquimal , Rabdomiosarcoma/genética , Proteínas de Fusión Oncogénica/genética
19.
Methods Mol Biol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499918

RESUMEN

Vernal keratoconjunctivitis (VKC) is a serious eye allergy characterized by poorly understood pathogenic mechanisms and a lack of effective treatments. Autophagy, a process involved in both triggering and suppressing immune and inflammatory responses, plays a role in VKC's pathophysiology. Understanding autophagy's involvement in VKC could lead to new treatment possibilities, such as utilizing specific topical substances to induce or inhibit autophagy and prevent severe complications of this eye condition. In our current protocol, we present a robust methodology established in our laboratory for studying autophagy in primary conjunctival fibroblasts. We assess autophagy through techniques like immunocytochemistry, immunoblotting, and qPCR.

20.
Methods Mol Biol ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38441724

RESUMEN

Leishmaniasis is a neglected tropical disease caused by numerous species of Leishmania parasites, including Leishmania major. The parasite is transmitted by several species of sandfly vectors and infects myeloid cells leading to a myriad of inflammatory responses, immune dysregulations, and disease manifestations. Every cell undergoes autophagy, a self-regulated degradative process that permits the cells to recycle damaged or worn-out organelles in order to maintain cellular health and homeostasis. Studies have shown that Leishmania modulates their host cell autophagic machinery and there are indications that the parasite-specific autophagic processes may be valuable for parasite virulence and survival. However, the role of autophagy in Leishmania is inconclusive because of the limited tools available to study the Leishmania-specific autophagic machinery. Here, we describe methods to study and definitively confirm autophagy in Leishmania major. Transmission electron microscopy (TEM) allowed us to visualize Leishmania autophagosomes, especially those containing damaged mitochondrial content, as well as dividing mitochondria with ongoing fusion/fission processes. Flow cytometry enabled us to identify the amount of acridine orange dye accumulating in the acidic vacuolar compartments in Leishmania major by detecting fluorescence in the red laser when autophagic inhibitors or enhancers were included. These methods will advance studies that aim to understand autophagic regulation in Leishmania parasites that could provide insights into developing improved therapeutic targets against leishmaniasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...